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Abstract—While personal data privacy is threatened by online
social networks, researchers are seeking for privacy protection
tools and methods to assist online social network providers
and users. In this paper, we aim to address this problem by
investigating how to quantitatively evaluate the privacy risk, as
a function of people’s awareness of privacy risks as well as
whether their friends can be trusted to protect their personal
data. We present a trust-aware privacy evaluation framework,
called TAPE. Simulations are performed to illustrate the key
concepts and calculations in TAPE, as well as demonstrate the
advantages of TAPE.

Index Terms—Online Social Networks, Trust-Awareness, Pri-
vacy, Wireless Sensor Networks

I. INTRODUCTION

With the emergence of online social networks (OSNs),

people are facing increasing privacy risks. Real life stories

of sensitive information leakage in OSNs happen frequently

[1], [2]. Most employers begin to collect potential employees’

information using social networks, and information leakage

through OSNs has put people’s careers on risk [3].

The current research addresses privacy protection in OSNs

from several angles: discussing privacy issues and protection

recommendations [4], managing privacy setting [5], and adopt-

ing new architectures to build OSN [6]. On the other hand, the

current methods for quantitatively evaluating the privacy level

of individual users of OSNs are still not mature, and many

current privacy protection approaches can greatly benefit from

better privacy quantification approaches.

Quantitatively evaluating privacy level in OSNs is a chal-

lenging task. First, quantitative user privacy level is not a well

defined concept in OSNs. Second, human users, whose behav-

iors are hard to quantify, play an important role in information

diffusion. Third, personal information can be leaked through

both online and offline media by many ways.

In this paper, we address the first challenge by proposing

quantitative privacy definition based on privacy risk and prob-

abilities. This quantitative measure will lead to the privacy

level calculation tools, originally proposed in the reliability

analysis field. To address the second and third challenge, we

have to consider the availability of data. Since nobody can

monitor all communication behaviors (online and offline) of

users, researchers have to work on limited data, which can be

obtained with reasonable cost. In this work, Facebook privacy

setting is used as the primary data source. We also focus on the

‘word-of-mouth’ [7] on OSNs as the channel of information

diffusion. Although other scenarios of information diffusion

are not considered in this work, the proposed concepts and

framework can be extended to the other scenarios.

We propose TAPE (Trust-Aware Privacy Evaluation) frame-

work for quantitatively evaluating user privacy risk in OSNs.

TAPE framework contains several novel aspects.

• It finds the similarity between the reliability analysis in

wireless sensor networks (WSNs) and the privacy risk

estimation in OSNs. It sets up the stage for utilizing

reliability analysis tools for privacy evaluation.

• It considers the information diffusion through nodes and

through links separately. Here, the information diffusion

through nodes (i.e. users) mainly depends on the users’

behavior, such as whether they respect other users’ pri-

vacy. Such behavior is described by Privacy Trust (PT)

and Privacy Awareness (PA), two new concepts intro-

duced in this paper. The information diffusion through

links (i.e. friend relationship) mainly depends on the

closeness between friends in terms of whether one paying

attention to the other’s personal information.

• It proposes the desirable properties of PA and PT metrics,

as well as specific ways to calculate PA and PT under the

guidance of trust management theory. It is the first time

that privacy trust concept has been used in evaluating

privacy level in OSNs.

The proposed TAPE framework and algorithms are illus-

trated and tested based on real Facebook user data. The

proposed PA algorithm is also compared with the known

algorithm called IRT [8].

II. RELATED WORK

Researchers studied privacy protection from two directions.

Along the first direction, fundamental changes to social net-

working sites were suggested to enhance user privacy. For

example, Baden et al. [6] proposed a new type of OSN using

encryption to hide user data and allowing user to define privacy

policies. The second direction is developing privacy tools

based on existing OSNs. For example, the tradeoff between

social network utility and personal privacy was studied in

[8]. Fang et al. [5] developed privacy wizards to give user

recommendation for privacy setting. Gundecha et al. [4] pro-

posed an approach to identify a user’s vulnerable friends. In

this paper, we propose to assist user privacy protection by

providing quantitative evaluation of privacy risk. Our work

belongs to the second category.

There have been several quantification models for privacy

evaluation in OSNs. Alim et al. [9] examined the visibility

of OSN users’ profiles and computed the clustering coeffi-

cient to compose individual vulnerability. Based on individual

vulnerability, relative vulnerability and absolute vulnerability



were calculated. A set of axioms for the vulnerability models

were presented in [10]. They all provide meaningful and useful

quantification approaches for OSN privacy evaluation. This

work approaches the privacy quantification problem from a

different angle. That is, to consider how likely a friend reveals

others’ personal information, described by the privacy trust

concept, which is a widely studied research problem [11].

The proposed work is also related to information diffusion

in OSNs [7]. For example, researchers attempt to build math-

ematical model to solve problems of information diffusion in

OSNs, such as [12]. Different from the previous work, the

proposed TAPE framework considers information diffusion in

the context of privacy protection, which requires different sets

of features and considerations.

III. TRUST-AWARE PRIVACY EVALUATION FRAMEWORK

A. Social Network Privacy

Some OSNs (e.g. Facebook) encourage people to use real

names and upload personal information onto a page known as

a ‘Profile’. Such personal information are often seen by many

people (e.g. friends) directly, and can even flow to thousands of

other people through retweet (e.g. on Twitter) or sharing (e.g.

on Facebook). The privacy concern in OSNs is well known,

but how can we define a privacy level in a quantitative way?

Before we discuss quantification of privacy level, let us first

look at two examples.

Example 1. Alice is a student, and she wrote a piece of

comment complaining her teacher Cris on her social network

site. Alice does not want Cris to know the comment.

Example 2. Alice posted a photo of her new boyfriend, and

she does not want anyone, except her friends, to see this photo.

In Example 1, the personal information concerned by Alice

is her comment on Cris, and in Example 2, the personal

information is her new boyfriend’s photo. It is clear that a user

has different personal information, and the privacy concerns

for different personal information can vary. We introduce

the notation Iuj to denote user u’s jth personal information.

Without loss of generality, we present the framework in the

context of protecting Alice’s privacy, i.e. u=“Alice”. Alice is

also referred to as the personal information owner (PIO).

In the rest of the paper, for simplicity, we often use Ij to

represent IAlice
j .

It is noted that privacy concerns are related to the “undesir-

able viewers”. We define the concept of Undesirable Group

(UG) of IAlice
j , denoted by UGAlice

j , as follows. If Alice does

not want her information Ij to be seen by user u
′, then u′ is put

into UGAlice
j , where u′ is also called Undesirable Destination

(UD) of Ij . In Example 1, Alice’s UG is {Cris}. In Example 2,

Alice’s UG contains all all users except her friends.

In other words, if Ij eventually flows to a UD, Alice consid-

ers her privacy of Ij being violated and personal information

leakage occurs. In the rest of the paper, for simplicity, we use

UGj to represent UGAlice
j .

B. Privacy Risk and Related Concepts

With the proposed TAPE framework, we aim to answer

two questions: 1) Can we measure the probability of personal

information leakage as a measurement of privacy level in

OSNs? 2) How is the personal information leakage related

to privacy risk? In this subsection, we first introduce the key

concepts of the TAPE framework.

In the context of OSNs, the leakage of personal information

Ij occurs when any UDs in UGj obtain Ij . In TAPE, we

assume that Ij can only be obtained through information

diffusion in OSNs, which only occurs through friend connec-

tions. This assumption is a result of the limitation of data, as

discussed in Section I. In the future, if more data are available,

such as cell phone contact data, this assumption can be revised.

Due to this assumption, the UG in Example 2 can be simplified

as {all of Alice’s 2-hop neighbors}. We define information

leakage probability of Ij , denoted as Lj , as the probability

that an UD obtains Ij .
In statistics, the notion of risk is often modeled as the

expected value of an undesirable outcome. That is

Risk = (probability of the accident occurring)

×(expected loss of the accident).
(1)

In the context of privacy risk, we argue that privacy risk of

information Ij , denoted by Rj can be computed as

Rj = Lj · Zj, (2)

where Lj is information leakage probability defined earlier

and Zj describes the expected loss/damage of information

leakage. In this work, Zj is called as information leakage

hazard and is normalized within interval [0, 1). We argue

that Zj can be determined by the PIO (e.g. Alice) and/or

existing research on the consequence of personal information

leakage [13]. Therefore, the core task of TAPE is to estimate

the information leakage probability Lj .

C. Toward Information Leakage Probability Estimation

In TAPE, a social network is represented by an undirected

diagram. Users are the nodes, and friend connections are

the links. As discussed earlier, personal information can be

diffused to unintended recipients through the friendship links.

It is important to point out that the existence of a link does not

mean the personal information will be transmitted through this

link. For example, Alice changes her status from “engaged”

to “single”. This information can be seen by all of Alice’s

friends. Here are three typical situations.

• Alice’s friend Ned does not pay attention to Alice’s status

at all. Alice’s status information does not disseminate to

Ned although the link between Alice and Ned exists.

• Alice’s friend Ned pays attention to Alice’s status. Alice’s

status information disseminates to Ned through the link

between Alice and Ned. Then, Ned respects Alice’s

privacy and does not tell others about Alice’s status

change. In this case, Alice’s status information does not

disseminate to others through Ned.

• Ned sees Alice’s status change, and adds a post, in

which he guesses that Alice broke with her boyfriend



according to her status change. Such post can be seen by

all Ned’s friends. In this case, Alice’s status information

disseminates to Ned, and then to others through Ned.

We argue that solving the problem of information leakage

probability estimation can be decomposed into two tasks.

1) The first task is to estimate the probability whether a

user’s private information will be disseminated through

a particular link or a particular node. In this work, such

probabilities are referred to as information spreading

probabilities (ISP). In the above example, the ISP of the

link between Alice and Ned reflects whether Ned will

pay attention to Alice’s information. The ISP of node

Ned reflects whether Ned respects Alice’s privacy.

2) The second task is to compute the information leakage

probability (i.e. Lj), given the network topology, the ISP

of nodes/links, the PIO (i.e. Alice), and the undesirable

group (i.e. UGj).

In the rest of this section, we first discuss the solution to

the second task (Section III-D), and then present the metrics

for solving the first task (Section III-E and Section III-F).

D. Privacy Analysis and Reliability Analysis

When investigating information diffusion in OSNs, we

found that one of reliability estimation methods called reli-

ability graph [14] aims to solve the similar problem.

In a reliability analysis problem, the system is represented

by a reliability graph, whose edges and nodes are components

of the system and are assigned certain failure probabilities.

The system has source nodes and sink nodes. If there is no

path from the source(s) to the sink(s), the system fails. In the

context of WSN reliability analysis, one often needs to esti-

mate the probability that there is at least one communication

path between source node(s) and destination node(s) [15].

In the TAPE framework, we have defined the informa-

tion spreading probability (ISP) for nodes and links. This

concepts is kind of “opposite” to the failure probability. For

example, if a node fails to forward data to the destination with

probability p, this node’s failure probability is p in the context

of WSN reliability analysis, whereas this node’s information

spreading probability is 1−p in the context of privacy analysis.
The goal of WSN is to transmit data successfully, whereas the

goal of privacy protection is to prevent personal data from

propagation. Therefore, in the TAPE framework, we can also

define failure probability of nodes/links as 1 − ISP . We

propose to use the binary decision diagram (BDD) method,

which is commonly used in reliability analysis [14], [15] to

solve Task 2 described in Section III-B.

In order to utilize the BDD method for social network that

is usually of large size, we revise BDD as follows. When

generating the BDD graph, the maximum traversing depth is

set by a factor κ, according to the number of hops between

PIO and UD. For example, if κ = 4 and the UD is 3 hops away

from PIO, then the BDD branches that are longer than 12 (3×
4) are pruned. This revised BDD is refered to as reduced BDD

algorithm. Table I shows the important concepts in TAPE, as

well as the concept mapping.

TABLE I: Concepts mapping

Reliability Analysis in WSN Privacy Analysis in TAPE

Communication reliability Information leakage prob.

Reliability graph Social graph

Source node PIO

Destination UD

Node/edge failure probability 1 - node/link ISP

E. Calculation of Node Information Spreading Probability

While most social network information diffusion models

consider the impact of nodes and links together [16], we argue

that information propagation through nodes and through link

should be considered separately. This is why we define node

ISP and link ISP separately, which can better describe the

information propagation process.

In this subsection, we discuss the Information spreading

probability of node, which is the probability that a node will

spread others’ information. We use ISPu to represent the ISP

of node u. One person is assumed to have a consistent ISP

within a certain period of time.

Evaluating information spreading probability of a person is

very challenging because it is related to one’s knowledge and

personality. In the real (i.e. offline) world, we probably can

estimate the ISP of a person based on experiences if we know

this person for a long time. Obviously, such estimation can be

biased and limited, and cannot be applied in OSNs. Instead

of resolving a challenging problem in social science, we

propose to examine ISP of a person based on the quantitative

information available in OSNs.

In particular, we propose two metrics that should be used

to estimate node ISP.

1) Privacy Awareness: The first one is privacy awareness

(PA), which purely depends on a user’s privacy setting. We

argue that privacy setting reflects a user’s privacy protection

awareness, describing whether a user is paying attention to

his/her own privacy. In the TAPE framework, PA evaluation

is a module whose inputs are privacy settings of the given

OSN user. In fact, implementations based on TAPE can use

any reasonable PA algorithms. We propose a PA algorithm in

Section IV.

2) Privacy Trust: We propose Privacy Trust (PT) to

represent how much a person should be trusted in terms of

protecting others’ privacy. Trust can be established through

recommendations [11]. For example, in Fig 2a, node B trusts

node C, and node B gives a recommendation to node A
saying that he/she trusts node C, node A can develop certain

level of trust in node C. In TAPE framework, we propose

to evaluate PT based on implicit recommendation through

friendship links. Similar to PA, PT evaluation is a module

of TAPE, and the inputs are the PA values of the friends of

the given user. The details will be presented in Section V.

PAu and PTu are used to represent the PA and PT of node

u respectively. Both PA and PT affect the ISP of node u. In
this paper, we compute the ISP of node u as:

ISPu = w · PAu + (1− w)PTu, (3)



Fig. 1: Core structure of the TAPE framework

TABLE II: Privacy setting statistics for birthday

Privacy setting Proportion of users adopting this privacy setting

‘everyone’ 5%
‘networks’ 40%

‘friends of friends’ 10%

‘friends’ 35%

‘self’ 10%

where w is the weight between 0 and 1. In the experiments in

Section VI, we choose w = 0.5.

F. Link Information Spreading Probability

As discussed in Section III-E, the ISP of the Alice-Bob link

depends on whether Bob heard what Alice said. It depends on

whether Alice and Bob have a strong tie between them in

OSNs. In the current literature, many works have investigated

this problem [17]. Note that the TAPE framework can accom-

modate any algorithms for link ISP calculation. In this paper,

we do not propose a specific algorithm for calculating link

ISP. In the experiments, we adopt a constant value for link

ISP and focus on the demonstrating the impact of PA and PT.

As a summary, the structure and key components of TAPE

are illustrated in Fig 1.

IV. PRIVACY AWARENESS ALGORITHM

A. The proposed algorithm: Rank PA

We define rank+u,j as the proportion of users whose privacy
setting for information Ij is looser than user u. As long as we

know the statistics of users’ privacy setting for information

Ij , we can compute rank+u,j . For example Table II shows

the statistics of birthday privacy setting of 10000 OSN users.

We assume the order of privacy settings from loose to tight is

{‘everyone’, ‘networks’, ‘friends of friends’, ‘friends’, ‘self’}.
If Alice allows only her friends to see her birthday, i.e.

sAlice,j = friends , then rank+Alice,j = 0.05+0.4+0.1 = 0.55.

Similarly, we define rank−u,j as the proportion of users whose

privacy setting for information Ij is tighter than user u. In the

above example, rank−Alice,j = 0.1.
Next, we compute the individual information privacy

awareness (IPA) for each privacy setting. Let IPAu,j denote

IPA of user u for information Ij , we propose

IPAu,j =
1

2
(rank+u,j − rank−u,j) +

1

2
. (4)

IPAu,j is normalized into [0, 1], since in the context of TAPE,

PA is evaluated in a probability meaning, and moreover, we

consider PA = 0.5 as neutral, PA < 0.5 as unawareness, and

PA > 0.5 as awareness. In the above example, IPAAlice,1 =
0.725.
We then calculate the IPA for all types of information:

I1, I2, I3, · · · , IJ , and compute the overall PA of user u as

PAu =
1

J

J∑

j=1

IPAu,j . (5)

B. PA Algorithm Criteria

The TAPE framework can accommodate many PA algo-

rithms. However, what are the design criteria for PA algo-

rithms? We identified seven special cases and the desirable

PA values in such special cases in Table III, which serves as

a guidance for PA algorithm design.

To see the insight of case 4, we look at an example. Assume

many people release birthday information to friends because

they want to remind friends about their birthdays, even if they

know the privacy risk of doing so. In this case, if Alice releases

her birthday, her PA should not be largely reduced. On the

other hand, if Alice releases a particular type of information

which most people choose not to release, Alice’s PA should

be reduced more. This is the reason why we consider special

cases 4, 5, 6 and 7. It is easy to verify that the proposed PA

algorithm does have the desirable features listed in Table III.

In Section VI-B, case study of Rank PA algorithm is

presented, and it is compared with an item response theory

(IRT) base privacy concern model proposed in [8].

V. PRIVACY TRUST ALGORITHM

In TAPE, we propose to evaluate privacy trust (PT) through

recommendations. If a user with high PA releases his/her infor-

mation to Alice, this user implicitly tells us he/she trusts Alice

not to propagate his/her personal information. This can be an

implicit recommendation. In real life, if a student working

on privacy research (e.g. myself) chooses to tell someone my

birthday and address, it means that I trust this person not

releasing my personal information to others. Although such

implicit recommendations have noises and can be biased, it

may be the best resource to compute PT in OSNs.

TABLE III: Desirable properties of PA calculation

Special Cases Desirable PA value

1: Alice’s privacy settings are
looser than all others’

PAAlice,j = 0

2: Alice’s privacy settings are
tighter than all others’

PAAlice,j = 1

3: Everyone has the same privacy
settings

PAAlice,j = 0.5

4: Many users (including Alice)
have loose settings, and a few users
have tight settings

PAAlice,j should be small, but
not too small because most peo-
ple share the same opinion as
Alice.

5: A few users (including Alice)
have loose settings, and many users
have tight settings

PAAlice,j should be smaller
than PAAlice,j in case 4.

6: Many users (including Alice)
have tight settings, and a few users
have loose settings

PAAlice,j should be high, but
not too high because most people
share the same opinion as Alice.

7: A few users (including Alice)
have tight settings, and many users
have loose settings

PAAlice,j should be much
higher than PAAlice,j in case
6.



(a) One-path trust (b) Two-path trust

Fig. 2: Trust and privacy trust propagation

Similar as in the PA calculation, we argue that the PT

calculation should have two desirable properties.

First, the level of privacy trust of user u, denoted by PTu,

largely depends on the number of recommendations from the

friends with high PA. If a user with low PA trusts Alice (i.e. al-

lowing Alice to view his/her personal information), this should

not affect Alice’s PT either positively or negatively. We use

F+
u to denote the number of high quality recommendations, i.e.

the number of u’s friends who have PA higher than a threshold

(ǫ+) and allow u to view a substantial amount of personal

information. Note that the calculation of PT may consider

other factors beyond F+
u , such as the specific PA value of

each friend. In this paper, we use a simple PT calculation,

in which only the F+
u value is considered. That is, PTu is a

function of F+
u , i.e. PTu = f(F+

u ).
Second, although each additional recommendation can in-

crease PTu, such increase diminishes when F+
u is very large.

For example, when F+
u increases from 3 to 6, PTu can

increase a lot. However, when F+
u increases from 300 to 303,

PTu should not increase much. Specifically, when X < Y ,

we should have f(X +∆)− f(X) > f(Y +∆)− f(Y ).
In [11], Sun et al proposed a probability trust model that

uses Beta function to address concatenation propagation and

multipath propagation of trust.

Fig 2a shows an example of one path trust propagation,

in which B trusts C with a trust measurement PBC (direct

trust value) and A has an judgement PAB (recommendation

accuracy) when B recommends her/his trust of C to A.
The trust between A and C can also be established through

multiple paths, as shown in Fig 2b, in which both B1 and B2
give recommendation of C.

In the context of privacy trust, the recommendation accuracy

PAB is replaced by PA of A, which is PAA, and the trust value

PBC is the implicit trust B towards C. This implicit trust,

represented by TB,C in TAPE, is established when B allows

C to view a substantial amount of personal information. For

simplicity, in the current work, we set TB,C as a constant.

VI. EXPERIMENT RESULTS AND DISCUSSION

We implement TAPE framework in Matlab. In PT algorithm,

PA threshold (ε+) is set to be 0.5 and TB,C is 0.7. Besides

PA and PT, the link ISP is set to be 0.9 for all links. In

this section, we first do a case study which demonstrates the

features of TAPE framework and then apply TAPE to two real

user datasets.

A. Case study

As shown in Fig 3, Alice, Dave and node 1 to 6 form a

group. Each node has 4 social network friends within the

group. Suppose Alice is considering her privacy, and she

(a) (b)

Fig. 3: Case study (PA of red nodes is 0.2, and PA of green

nodes is 0.7)

defines the UD to be {Bob}, who is outside the group. We

assume the PA distribution within the group is fixed. There

are 4 nodes with PA=0.2 and 4 nodes with PA=0.7. In Fig 3a,

all of Alice’s friends have low PA values, which means their

privacy settings are quite loose. In Fig 3b, all of Alice’s friends

have high PA values, which means their privacy settings are

quite tight. After applying TAPE framework, we obtain that

the information leakage probability for Alice is 0.08 in Fig 3a

and is 0.12 in Fig 3b.

We make the following observations. First, only considering

the Alice’ friends privacy setting is not sufficient. In Fig 3a,

all Alice’s friends have loose privacy setting, but Alice has

higher privacy level (lower information leakage probability). In

Fig 3b, Alice’s friends have tight privacy setting, but Alice has

lower privacy level. Second, considering specific information

leakage path is important. We found the critical node is Dave,

whose information spreading probability (ISP) largely impact

Alice’s privacy level. The ISP of Dave is 0.36 and 0.53 in

Fig 3a and Fig 3b, respectively.

Through this example, we can see that the privacy level of

Alice depends on the choice of UD, network topology, and

the ISP of nodes along the paths from Alice to the UD. All

these factors have been included in the TAPE framework.

B. Comparisons between PA algorithms

In this subsection, we compare two PA algorithms by

applying them in special cases. We assume there are 4 binary

privacy settings for each OSN user, which is the column index

of Table IV. For example, ‘0000’ means 4 privacy settings are

all set to be ‘hidden’. We investigate the PA computing results

in following scenarios, and compare it with the IRT model [8].

1) Most users (85.8%) have very tight privacy settings (i.e.

0000).

2) Most users (85.5%) have have tight privacy settings for

some information, and loose privacy setting for the other

information (e.g. 0101).

3) Most users (85.4%) have very loose privacy settings (i.e.

1111)

4) The percentage of users with different privacy settings

are uniformly distributed.

The results are shown in Table IV. For example, in case 1,

85.8% of users choose setting ‘0000’. For those users, IRT

model in [8] computes IRT PA=0, and TAPE computes Rank

PA=0.54. We observe the two models have similarities.

1) Generally, the more privacy settings are set to be open,

the lower the corresponding PA value is.



TABLE IV: PA calculation examples

Special cases
Privacy settings: s1s2s3s4 (0=hidden,1=open)

0000 0001 0010 0100 1000 0011 0101 0110 1001 1010 1100 0111 1011 1101 1110 1111

1

Stats 85.8% 0.9% 0.9% 0.9% 0.9% 0.9% 1.0% 0.9% 1.0% 1.1% 0.9% 1.0% 0.8% 0.9% 1.0% 0.9%

IRT PA 0.00 -1.28 -1.28 -1.28 -1.28 -1.38 -1.38 -1.38 -1.38 -1.38 -1.38 -4.57 -4.57 -4.58 -4.56 -1.67

Rank PA 0.54 0.41 0.41 0.41 0.41 0.29 0.29 0.29 0.29 0.29 0.29 0.16 0.16 0.16 0.16 0.04

2

Stats 1.1% 0.9% 1.1% 0.8% 1.0% 0.8% 85.5% 1.2% 1.0% 1.1% 0.9% 0.9% 0.9% 1.1% 0.9% 0.9%

IRT PA 1.88 1.06 1.06 1.06 1.06 0.00 0.00 0.00 0.00 0.00 0.00 -1.06 -1.06 -1.06 -1.06 -1.87

Rank PA 0.75 0.62 0.62 0.62 0.62 0.50 0.50 0.50 0.50 0.50 0.50 0.37 0.37 0.37 0.37 0.25

3

Stats 0.9% 0.9% 1.1% 0.9% 0.9% 0.9% 1.0% 1.0% 1.1% 1.0% 1.1% 1.0% 0.8% 1.2% 0.9% 85.4%

IRT PA 1.67 1.47 1.47 1.47 1.47 1.38 1.38 1.38 1.38 1.38 1.38 1.28 1.28 1.28 1.28 0.00

Rank PA 0.96 0.84 0.84 0.84 0.84 0.71 0.71 0.71 0.71 0.71 0.71 0.59 0.59 0.59 0.59 0.46

4

Stats 6.3% 6.4% 6.5% 5.9% 6.6% 6.2% 6.1% 6.2% 6.5% 6.3% 6.4% 6.0% 6.1% 6.4% 6.1% 6.1%

IRT PA 0.24 0.12 0.12 0.12 0.12 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.12 -0.12 -0.12 -0.12 -0.24

Rank PA 0.75 0.62 0.62 0.62 0.62 0.50 0.50 0.50 0.50 0.50 0.50 0.37 0.37 0.37 0.37 0.25

2) The majority behavior always gets a PA value around

0.5 for Rank PA (or 0 for IRT PA), which is in between

awareness and unawareness.

3) When most people adopt tight privacy settings (case 1),

releasing information implies high privacy risk. Therefore

the PAs of all other privacy settings in this case are less

than 0.5 for Rank PA (or less than 0 for IRT PA), which

means unwareness. And vice versa (case 3).

4) When the percentage of users with different privacy

settings are uniformly distributed (case 4), the Rank PA

values distributes from 0.25 to 0.75, which means there’s

neither extremely high PA nor extremely low PA.

We claim that the Rank PA is better than IRT PA. Rank PA

value is normalized to (0,1), which has an intuitive meaning

and is comparable. It can also be easily extended to a proba-

bility method. IRT PA value has a range of (−∞,+∞). We

need further normalization to make IRT PA meaningful and fit

probability based methods. For example, in case 2, the Rank

PA is distributed from 0.25 to 0.75, and IRT PA is distributed

from -1.87 to 1.88. In case 4, the Rank PA is distributed

from 0.25 to 0.75, but the IRT PA is distributed from -0.24 to

0.24. In such situation, we cannot directly compare IRT PAs

between different cases.

C. Datasets
Two datasets were constructed to perform larger scale exper-

iments. Dateset I contains 514 Facebook users, including one

graduate student at URI, his friends, and his friends of friends.

Note that the privacy setting data is usually not provided

by OSN providers. In this dataset, very detailed privacy

settings were obtained through a survey. Dataset II contains

957 thousand Facebook users, sampled by Metropolis-Hasting

random walk (MHRW) by the authors of [18]. Four privacy

settings were crawled for each user, including ‘add as friend’,

‘photo’, ‘view friends’ and ‘send message’. For each, the

privacy setting is binary, either open or hidden, from the

crawler points of view. Some features of the two datasets are

listed in Table V.

D. Privacy Leakage Probability
It is well known that the reliability of data transmission can

drop significantly as the distance (i.e. the number of hops)

between the source node and the destination node increases. In

the context of privacy protection, does the information leakage

probability heavily depend on the distance between the PIO

and the UD?

TABLE V: Datasets summary

Dataset I Dataset II

# of unique users 514 957K

Avg real degree 215.8 95.2

Avg sampled degree 2.1 3.8

Max sampled degree 18 124

# of privacy settings 16 4

Privacy setting type 5 levels binary

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIO to UD Hops

In
fo

. 
le

a
k
a

g
e

 p
ro

b
.

 

 

Link ISP=0.95

Link ISP=0.9

Link ISP=0.8

Link ISP=0.5

Fig. 4: Information leakage probabilities vs. PIO to UD hops.

In this subsection, we study the relationship between the

privacy leakage probability (the y-axis in Fig 4) and the hop

distance from the PIO to the UD (the x-axis in Fig 4).

We first randomly pick 100 nodes and put them in set S.
In each round of simulation, we pick one node from S as

PIO, and pick one other node from the k-hop neighbors (k =
1, 2, 3, 4, 5, 6) of the PIO as UD. For each pair of PIO and UD,

we measure the distance between them (hops), compute the

information leakage probability using TAPE, and plot Fig 4.

Each point represents one result. The x-axis indicates the hop-

count distance between PIO and UD, and y-axis is the ISP. The

color indicates link ISP, which is chosen as 0.5, 0.8, 0.9, and

0.95 respectively. We have several observations

• The information leakage probability to 1-hop neighbors

(i.e. friends) can be greater than the link ISP. This is

because Alice’s friend not only gets the information from

Alice directly, but also through other paths. For example,

Alice’s friend Bob may not heard what Alice said, but

he could get the message from Charlie who is a friend

of Alice.

• As expected, when the hop distance increases, the infor-

mation leakage probability has a decreasing trend.

• When the distance is small, the information leakage

probability varies in a large range. The hop count is not

a dominating factor. The PA, PT and network topology
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jointly determine users’ privacy level. A user who is 3

hops away can be more likely to obtain Alice’s person

information than a user who is 2 hops away.

• As the link ISP decreases, information leakage probability

decreases. In the future work, incorporating the estima-

tion of link ISP will yield even a larger variation in the

ISP values.

E. The impact of PA and PT

Since the lack of “ground truth” about the real privacy

level of users, it is hard to compare TAPE with other privacy

evaluation methods that consider different features of the users.

Instead of comparing TAPE with a specific method, we argue

that a prevalent type of privacy study in OSNs only focuses on

network topology. We construct a comparison method, referred

to as the topology-based method, which uses the BDD to

compute the information leakage probability with the fixed

link ISP and fixed node ISP. By comparing TAPE with the

topology based method, we will see whether considering PA

and PT metrics reveals more information that is not captured

by considering the topology alone. In the experiment of the

topology based method, we set link ISP to be 0.7, and set node

ISP to be the average of node ISP in the proposed approach.

The experiment setup is similar to that in Section VI-D. We

compute (LTopology−based − LTAPE)/LTAPE , which is the

percentage of information leakage probability change without

considering PA and PT. in Fig 5, we show the histogram of

such percentage of change, for results using two datasets.

It is seen that the change range is from -25% to 15%.

Considering PA and PT does provide additional and useful

information beyond the topology. In addition, it is seen that

dataset II shows more concentrated distribution around 0. It

is known that, dataset II has 4 binary privacy settings, while

dataset I has 16 5-level privacy settings. We argue that the

comprehensiveness of privacy setting used in TAPE can impact

the performance of TAPE.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new Trust-Aware Privacy

Evaluation framework, as shown in Fig 1, for quantitative

evaluation of users’ privacy risk in OSNs. The concepts of pri-

vacy awareness and privacy trust were introduced. Simulations

were performed to illustrate the computation of information

leakage probability, as well as to demonstrate that TAPE

captures useful information that was not captured by the

topology-based methods. More importantly, TAPE sets up

the stage for utilizing reliability analysis, which is a well-

developed field, to solve privacy risk analysis problems. Future

work includes developing better PA and PT algorithms and

performing sensitivity analysis to discover how to improve

user privacy in OSNs. Additionally, framework evaluation and

comparisons will be performed in the future if real OSN users

can be involved. This work is partially supported by NSF

award #1112935 and #1112947.
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