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Introduction

• fMRI based classification of Alzheimer’s Disease (AD) and normal

control (NC) subjects is beneficial for early diagnosis and treatment

of brain disorders [1, 2].

• The size of fMRI data samples is generally quite limited, which

has become a major bottleneck. Most existing classifiers could po-

tentially suffer from noise effects, due to both biological variability

and measurement noise.

• In this paper, we provide a theoretical analysis on the influences

of size limited fMRI data samples on the classification accuracy,

based on the naive Bayesian classifier.
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Brain Connectivity Pattern Classification

In fMRI based studies, it is a common practice to study multiple

regions of interest (ROIs) instead of only one region. Regions within

the ROI formulate a sub-network, and the network connectivity

pattern analysis is then carried out by evaluating the correlation

between all ROI pairs within the sub-network.
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Major Procedure

• In this paper, we select the right and left hippocampi and ICCs (4

regions) as our ROI sub-network. Our connectivity pattern analysis

is carried out following the procedure below.

– Pearson correlation coefficients between all possible pairs of the

ROIs within the group to formulate the feature vectors.

– Dimensionality reduction using the Linear Discriminant Analysis.

– Classification using the naive Bayesian classifier.
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Linear Discriminant Analysis

• Linear Discriminant Analysis aims to separate two classes by pro-

jecting them into a subspace where different classes show most

significant differences [3].

• Given a set of d−dimensional vector samples V =

{v1, · · · ,vn1,vn1+1, · · · ,vn1+n2}, consider the projection of vec-

tors in V to a new 1−dimensional space:

x = wtv, (1)

where w is a d× 1 matrix to be determined by the LDA algorithm.

• After projection, various classifiers, such as the Bayesian classifier

can then be applied to the projected vectors {xi = wtvi}n1+n2
i=1 for

further classification.
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Influence of Sample Size on The Accuracy
of Bayesian Classification

• Suppose we have a set of normally distributed data samples {x},
where n of them are from the first class C1, and n of them are

from the second class C2. Assume µ1 < µ2 and σ2
1 = σ2

2 = σ2
0.

• The basic Bayesian classifier aims to find the decision regions by
calculating the boundary points b = (µ1 + µ2)/2. The probability
of the error that the random variable y is incorrectly classified by
the Bayesian classifier is:

Perr =
1

2

∞∫
b

1√
2πσ0

e
−(y−µ1)2

2σ2
0 dy +

1

2

b∫
−∞

1√
2πσ0

e
−(y−µ2)2

2σ2
0 dy. (2)
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• In real applications, µi and b will be replaced with the estimated
values µ̂i and b̂. Hence an extra error probability will be introduced:

Poe =

∫ b̂

b

1√
2πσ0

[e
−(y−µ2)2

2σ2
0 − e

−(y−µ1)2

2σ2
0 ]dy =

∫ e

0

g(z)dz, (3)

where z = y−b, e = b̂−b, d′ = (µ2−µ1)/2, g(z) = 1√
2πσ0

[e
−(z−d′)2

2σ2
0 −e

−(z+d′)2

2σ2
0 ].

• The final classification error probability P (n) is then the sum of

Perr and Pe(n), i.e.,

P (n) = Perr + Pe(n), (4)

where Pe(n) is the mean of the extra error probability Poe.
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Monotonic Analysis

• Since µ̂i, i = 1, 2 are normally distributed with variance σ2, e will

also be normally distributed with mean 0 and variance σ2 = σ2
0/n.

• Hence Pe(n) can be calculated as:

Pe(n) =

∫ ∞
0

Poe
1√
2πσ

e
− e2

2σ2de =

∫ ∞
0

g(z)Q(

√
nz

σ0
)dz, (5)

where e′ = e/σ, and Q function is the tail probability of the

standard normal distribution.

• The Q function is always monotonically decreasing withe respect

to
√
nz
σ0

, for every z, when the sample size n increases, Q(
√
nz
σ0

) will

decrease, and so is Pe as well.
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Upper Bound of Error Probability

• The error probability Perr is upper bounded by [4]:

Perr ≤
1

2
e
−(µ2−µ1)2

8σ2
0 =

1

2
e
−∆2

8σ2
0 . (6)

• When µi is replaced with µ̂i, ∆ will be replaced by ∆̂:

∆̂ = µ̂2 − µ̂1 = µ2 − µ1 − [(µ̂1 − µ1)− (µ̂2 − µ2)] = ∆− s, (7)

where s = (µ̂1−µ1)−(µ̂2−µ2) is the skew introduced by the estimated

averages.

• In this case, the corresponding upper bound B(s) can be roughly
approximated as:

B(s) =
1

2
e
−(∆−s)2

8σ2
0 . (8)
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• Since µ̂i is a Gaussian random variable with mean µi and variance

σ2 = σ2
0/n, we can know that s is also a Gaussian random variable

with mean 0 and variance σ2
s = 2σ2 = 2σ2

0/n.

• The expectation of the Bhattacharyya Bound B can be roughly
approximated as:

B =

+∞∫
−∞

B(s)
1√

2πσs
e
− s2

2σ2
sds =

1

2

√
2n

2n+ 1
e
−∆2

8σ2
0

√
2n

2n+1
. (9)

• It can be seen from Equation (9) that the bound of the average

estimated error probability will decrease monotonically as sample

size n increases.
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Numerical Results

• In our data collection process, 10 patients with mild-to-moderate

probable Alzheimer’s Disease and 12 age- and education-matched

healthy NC subjects were recruited.

• In the simulations, we vary the sample size of each subject group

from 4 to 10.

• Since the size of data samples is small, the performance of the

classifier is evaluated by the Leave-One-Out (LOO) cross-validation.
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• Figure 1 shows the classification accuracies and error probabilities

of the Bayesian classifier with respect to the sample size.

• When the sample size n = 4, the classification accuracy is as low

as 54%, which is slightly higher than that of random guess; and

when the size n = 10, the accuracy is increased to be higher than

80%.

• This provides an estimation on the expected classification error

probability for a given data sample size.

Michigan State University GlobalSIP16 11



4 5 6 7 8 9 10
Number of samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Classification Accuracy and Error Rate

Accuracy
Error

Figure 1: Classification accuracies and error probabilities with respect

to the sample size.
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Conclusion

• In this paper, we analyzed the influence of sample sizes on the clas-

sification accuracies and error probabilities in the brain connectivity

pattern analysis.

• Both theoretical and numerical analyses showed that: as the sample

size increases, the errors caused by inaccurate estimation of optimal

decision bound of the Bayesian classifier and the upper error bound

will be reduced.
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