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> Characterize Sparsity on Graphs - w.r.t. the graph connectivity & defining subspaces

> Signal Models: Tackle Analysis vs Synthesis Problem in the structured setting of graphs
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Motivation and Objectives

> Characterize Sparsity on Graphs - w.r.t. the graph connectivity & defining subspaces

> Signal Models: Tackle Analysis vs Synthesis Problem in the structured setting of graphs

> Establish discrepancy between Analysis & Synthesis view of graph Laplacian through subspace
analysis

For circulant graphs
> Develop closed-form expressions of functions defining the subspaces & concretize discrepancy

> Transition between model equivalence and non-equivalence for the parametric graph Laplacian
> Unify results to quantify uniqueness guarantees for signals in UoS models on graphs

= Links between Graph Theory, PDEs & Linear Algebra render problem investigation feasible
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Preliminaries: Signal Processing on Graphs

> A graph G = (V, E) is defined by a vertex set V = {0, ..., N — 1}, with |[V| = N, and edge set
E={Eo, ..., Em—_1}

<l 4

\3/ \0
VN
1

2

> The adjacency matrix A captures the connectivity of G, with
A;j >0, if i and j are adjacent (i #j), A;; =0, otherwise

and D is the diagonal degree matrix with D;; = Zj Aij
» The non-normalized graph Laplacian is given by L=D — A
> The oriented incidence matrix § € RIEIXIVI has entries

Sk,i =/ Aijs Skj= —\/;J, if edge Ex = {i,j} is directed as i — j

and we have L =S"S

> We consider undirected, and (un-)weighted graphs without self-loops

> The graph signal x on G, with x : V — C s.t. x(i) is the sample value of x € CV at vertex i, is

piecewise smooth w.r.t. L if Lx is sparse, i.e. ||Lx||o < N
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The Analysis vs Synthesis Problem

Synthesis Analysis
> generate signal x = Dc, given dictionary > given analysis operator 2 € RY*N apply
D € RVXM N < M, and ¢ € RM with constraint ||Qx||o = k <K M with Qzx = 0,
[lello = k < M of sparse support A = Cosparsity: | := M — ||Qx||o [Nam et al, '13]
> subspace: Vje := span(D;, j € A°) > subspace: Wj := N(W,Q)

> In the non-singular case, the two are equivalent: Q=D

> Prior Work: [Elad et al, '07], [Nam et al, '13], for full-rank operators; in general the two models are
not equivalent

> We consider square rank-deficient (difference) operators in the structured domain of graphs with
Q =L and D = L' as the Moore-Penrose Pseudoinverse (MPP)

= Characterize the underlying subspaces to understand how the models are fundamentally interrelated
& uncover transitional properties

Matrix Wy selects the rows of  in set A
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The Cosparse Analysis Model on Graphs

Prop. 1

The analysis subspace W) := N(WAL) on a connected graph G = (V/, E) is given by
N(WAL) = z1y + LW we,

where W € RINCIXIA°1-1

> |AS] — 1 0
-1 A —2 0

- oo

-1 A -3

-

—1 —1 oao —1

forzeR, ce RINI-1,

> We require the constraint W s.t.\IJ,(ch 1 1y (Fredholm Alternative) on the solution subspaces
> N(W)L) has rank N — |A| = |A°] for |[A| < N
> The subspace LT‘UKCW is empty for [A| > N — 1.
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Analysis Constraints
> The constraint W has a zero-sum column structure, facilitating
wiwe=5"t
for suitable ¢ € RI"1=1 and t € RIE!

> In general, any basis in (e; — e;), i,j € A° C V, is acceptable, where ¢;(i) =1, ei(j) =0, j# i
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> The constraint W has a zero-sum column structure, facilitating
wiwe=5"t
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Analysis Constraints

»> The constraint W has a zero-sum column structure, facilitating
wiWe=5"t
for suitable ¢ € RI"I=1 and t € RIE|
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Analysis Constraints

» The constraint W has a zero-sum column structure, facilitating
wiwe=5"t
C
for suitable ¢ € RI"I~1 and t € RIE!

> In general: basis in (e; —e;), i,j € A° C V, is acceptable, where e;(i) =1, €(j) =0, j#i

> Example
Eq [ E7

1 1 1 1 0 0 0 0 0 0 0 0
-1 0 0 0 1 1 1 0 0 0 0 0
sT — 0 —1 0 0 -1 0 0 1 1 0 0 0
0 0 0 0 0 -1 0 —1 0 1 1 0
0 o -1 0 0 0 0 0o -1 -1 0 1
0 0 0o -1 0 0o -1 0 0 o -1 -1

1

0

0

Eo + Es + E; = 1 ¢E
0
0
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The Sparse Synthesis Model on Graphs

>

Consider x = LTc on connected G, with D = LT and sparse ¢ € R" of support A° C V
The MPP LT, with LLT = Iy — LJy and L1y = Op, is the discrete Green’s function of L

We have L(LTST) = L(ST) =87
Any piecewise smooth signal on G is at least 2-sparse w.r.t L, in the range of S7

The analysis operation Lx = ¢ characterizes the constrained synthesis representation

x:LTZSJ-T=ZS;, with ¢ = E SJT

j€Es J€Es J€EEs

The functions LT & ST encapsulate different orders of smoothness and hop-localization w.r.t.
operators L? & L:
L’L" =L and LST =87

and the locations of non-zeros in the range of L and ST can be interpreted as its ‘knots’

The Gram structure of L with sparse S” reveals an underlying structured sparsity on graphs
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Union of Subspaces Model - Comparison

Thm. 1

> On a connected graph, the cosparse analysis model, N(W,L) = span(1y; Lf (ei —ej),i,j €N) isa
constrained instance of the sparse synthesis model, span(LjT,j € A°), up to a translation by
N(L) = 1y.

> Signals x which satisfy [|Lx|]o = N — I (or Lax = 0p) are in the analysis UoS of cardinality |[A] =/

UW:IW,\, for Wy := N(Lp)

> Signals x which satisfy x = LTc with ||c||o = k (or x = L;{cc/\c) are in the synthesis UoS of cardinality
[N| =k
LJMC‘:‘(V,\:7 for Ve = span(LjT,j € N)

[ [ Synthesis 1 Analysis 1l
[[ Sparsity | Dim. Subsp. No. || Dim. Subsp. No. ]
1 1 L N 1 1y 1
T c N LT(e: N c N
2 2 span(LJ.,JE/\ ) (2) 2 span(1y; L' (e;i — ej),i,j € A) (2)
k<N | ko span(tfieny  (F) ||k span(lwili(ei—e)ijen)  (})

Table 1: Subspace Characterization of L for a Connected Graph
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Union of Subspaces Model - Comparison

Thm. 1

> On a connected graph, the cosparse analysis model, N(W5L) = span(1y; Lf (ei —ej),i,j €N) isa
constrained instance of the sparse synthesis model, span(LjT,j € A°), up to a translation by
N(L) = 1y.

> Signals x which satisfy [|Lx|]o = N — I (or Lax = 05) are in the analysis UoS of cardinality |[A] =/

Uja o War for Wai= N(La)

> Signals x which satisfy x = LTc with ||c||o = k (or x = L;{Cc/\c) are in the synthesis UoS of cardinality

Y] = k
U|/\C\:k Ve, for Vpe := span(LjT,j € N
I [ Synthesis Il Analysis 1l
|| Sparsity | Dim. Subsp. No. |[ Dim. Subsp. No. ||
2 2 span(L;r,j € A% (g’) 2 span(1y;Li(e; — e),i,j € A°) (’;’)
k< N Kk span(Lf,j € A%) (Q’) k  span(ly;Li(ei — e)),i,j € A%) (f)

Table 1: Subspace Characterization of L for a Connected Graph

> If N(L) is omitted, Wi has dimension k —1and | J = Wa C |, _, Vae
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Union of Subspaces Model: Disconnected Graph

» G = (V,E) has t connected components Ci s.t. V = UZ:I Ci, with |G| = Nk

> N(W,L) is given as the span of

Lj\if}iwl 0
T .
Liwlw = 0 LVycW 0 |, with Wy, € RN and 6 = A UAS
0 Ljﬁ;,(?wt

of rank at least |A°| — t, where 15}( Wi W, =0 and N(L) = {1¢,, ..., 1.} of rank t
k
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Union of Subspaces Model: Disconnected Graph

» G = (V,E) has t connected components Ci s.t. V = UZ:I Ci, with |G| = Nk

> N(W,L) is given as the span of

LigT,

w
1EAg T
0

T .
Liwlw = LVycW 0 |, with Wy, € RN and 6 = A UAS

0 o Liwlw,
t

of rank at least |A°| — t, where lﬁk \TJXC W =0, and N(L) = {1¢, ..., 1¢, } of rank t
k

> The constraints form a Structured Sparsity Model with blocks (components) Cy, whose coefficients

respectively sum to 0

cpt+cg=0

€11+ C1e+ €17 =0

c+c3=0

> For k = |A°| with k < Nj;, the synthesis UoS has (2’) subspaces V)¢ of dimension k, while the

analysis UoS has L < (Q’) subspaces W) of dimensions ranging from k to k +t — 1

= The dimension & number of analysis subspaces become non-uniform

9/19
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The Simple Cycle

> On the simple cycle G¢, the rows (columns) of L¢ have 2 vanishing moments [MSK, '17] & Lz has
entries L1 (7,j) = W=DWe) 15y U020 < j < N — 1 [Ellis, 03]
c\hJ) = 2N Y N ShL)s S
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The Simple Cycle
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The Simple Cycle

> On the simple cycle G¢, the rows (columns) of L¢ have 2 vanishing moments [MSK, '17] & LZ has
)
entries Lf.(j,j) = W=D 1); g U5 for 0 < i, j < N — 1 [Ellis, 03]
> Differences Lz(e; —€j), i,j € V, are piecewise linear
> SE of circulant incidence matrix S¢ with first row [I — 1 0 ... 0] has entries

SHig) = Bt =5, for i<y, 0<ij<N-1
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The Simple Cycle

> On the simple cycle G¢, the rows (columns) of L¢ have 2 vanishing moments [MSK, '17] & LZ has
. Ty (N=D(N+1) 1y - (G—i)? .. _ .
entries L[(i,j) = 55— — 51J — il + *55—, for 0 <i,j < N —1 [Ellis, '03]

> Differences Lz(e; —ej), i,j € V, are piecewise linear
> S‘\C of circulant incidence matrix S¢ with first row [I — 1 0 ... 0] has entries

SLU) = Mgt fer i<, 0< i j<N=1

> The sparse synthesis model on G¢, span((LZ)j, Jj € A°), generates up to piecewise quadratic
polynomials, orthogonal to 1y

> The cosparse analysis model on G¢, defined by
N(WaLc) = span(1n;Li(e; —e)), i,j € A°), with LL(e; —e;) = E (S5
k€Eg
generates up to piecewise linear polynomials, for suitable edge sequence Es C E, and tx € R.
= broad representation range w.r.t. both Lz and Sz

= synthesis interpretation of (classical) vanishing moment constraints
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General Circulant Graphs

(a) s = {1} () $={1,2,3,4}

=- Models for general circulant graphs can be developed on the basis of the simple cycle:

> A graph Gs is circulant w.r.t. generating set S = {s;},, 0 < s, < N/2, if nodes (i, (i & sk)n)
are adjacent, Vs, € S = Gs is circulant if L is circulant
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General Circulant Graphs

o e
¢ ®
o o
.
(a) S = {1} (b) S = {1,3} (c) S ={1,2,3,4}

=- Models for general circulant graphs can be developed on the basis of the simple cycle:

> A graph Gs is circulant w.r.t. generating set S = {s;},, 0 < s, < N/2, if nodes (i, (i & sk)n)
are adjacent, Vs, € S = Gs is circulant if L is circulant

> Lemma: On connected Gs, with s =1 € S & bandwidth M < N/2, we can decompose L as
P,

s , where Pg, is circulant positive definite of bandwidth M — 1.

> Pg

s encapsulates the connectivity information of Gg

> We have LT = PE;LZ, where the entries of Pgsl exhibit exponential decay (in absolute value),

. st
perturbing’ L

> The columns of ST are ‘perturbed’ piecewise linear polynomials
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General Circulant Graphs

Thm. 2

» The cosparse analysis model on circulant graphs generates perturbed piecewise linear polynomials
N(WpL) = z1y + PE;LJE“’]\;WCL c € ]R'AC"I, which are translated by 1y, while the sparse

synthesis model generates perturbed piecewise quadratic polynomials, PESILZ“’}\'cCQ, c € RN

= The analysis constraint reduces the order of the functions which define its subspaces

P
Bt revssnso st

Signal Value
Signal Value

0 ) E] E] m E) E] o 0 E) )
Vertex Vertex

(a) Functions on Gg with S = {1} (b) Functions on Gg with S = {1,2,3}
Figure 1: Comparison of signal models on circulant graphs
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The Generalized Graph Laplacian

. . M . .
» Parametric L, = doly — A, with d,, = Zj:1 2d; cos(ayj), a € C, and weights d; = Ai,(i+i)/v'
annihilates x = e='®*, t = [0 ... N — 1] on circulant graphs of bandwidth M [MSK, '17]

> On the simple cycle, the rows (columns) of L¢ . have 2 exponential vanishing moments

> Lc,q is singular for o = 27k /N, k € N, with N(Lc, ) = span(e’®t, e™'*"), & non-singular o/w
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The Generalized Graph Laplacian
» Parametric Lo, = doly — A, with dy, = Z}Zl 2d; cos(ayj), a € C, and weights d; = Ai,(/+i)N

annihilates x = e='®*, t = [0 ... N — 1] on circulant graphs of bandwidth M [MSK, '17]

> On the simple cycle, the rows (columns) of L¢ . have 2 exponential vanishing moments

> Lc,o is singular for o = 27k /N, k € N, with N(Lc,) = span(e’®*, e™'*"), &
C,o has entries

1 i 1 .
L2 ) = e T -
c,a(m,n) (Ce—ia t o) (—1 1 elal) + (e—io — eia)(—1 + e—ial)

0<mn<N-1.

» Lemma 1 For Lt

= The rows (columns) of Lgla are complex exponentials

> Lemma 2 For o = 2wk/N, k € Nand a # 0, k, LJr has entries

( 14 ) 4 (N — 1) — (N + 1)

( 1+ e2:a)2

o(msn) =

-1 + e—2r’o¢) 4 (N _ 1) _ 672ia(N+ 1)
2N (—1+ e 2y

= The rows (columns) of LTC are linear complex exponential polynomials
o
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The Generalized Graph Laplacian

> On general circulant graphs Gs, we have Lo, = L¢ o Pa, Where P, is circulant of bandwidth M — 1
and depends on the graph connectivity

> P, is positive definite up to certain « € C and Ggs, then P;l invokes a localized perturbation

Thm. 3

For oo # 2wk /N, k € N, the cosparse analysis and sparse synthesis models of L, are equivalent,
generating perturbed complex exponentials

1
(e

P;‘L; Wi ACC V.

For o = 2wk/N, o # 0, kw, k € N, the sparse synthesis model generates perturbed linear
complex exponential polynomials

=il T
PoLeaVae A C V.
The cosparse analysis model generates the constrained, translated subspaces
N(La) +PLILE WiWae, A°CV,
for constraint W, € CIN°IXI°1=2 guch that Wi (W,,); L etiet,

If lll;(—cWac = (Lc,a); for some j € V, this reduces to perturbed complex exponentials

_ 1
N(La) + P.* (IN = NEQ) g, for suitable & € C"

where E,, is the projection onto N(L. ), and is comparable in order to the case a # 2wk /N, k € N.
v

> For a = 0, this reduces to the graph Laplacian L
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Signal Value
‘Signal Value

(a) Gs with S = {1} (b) Gs with S = {1, 2,3}

Figure 2: Comparison of signal models on circulant graphs for L;l, a = 0.21.

Signal Value
Signal Value

Vertex Vertex

(a) Gs with S = {1} (b) Gs with S = {1, 2,3}

Figure 3: Comparison of signal models on circulant graphs for LT ,a =47 /N.
a
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Uniqueness Guarantees

> Suppose x belongs to a graph Laplacian based UoS model on an undirected graph:

= Identify the unique (co)sparse solution of y = Mx, for suitable M € R™ " m < N, with linearly
independent rows
> Given mutually independent M and €, we require m > Rq(/), with
Ra(l) := max{dim(Wp, + Wp,) : |Ai| > 1,i=1,2}
to uniquely identify x with Qxx = 05, I = N — ||Qx]|o [Lu et al, '07]
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Uniqueness Guarantees

> Suppose x belongs to a graph Laplacian based UoS model on an undirected graph:

= Identify the unique (co)sparse solution of y = Mx, for suitable M € R™ " m < N, with linearly
independent rows
> Given mutually independent M and €, we require m > Rq(/), with
Ra(l) := max{dim(Wn, + Wp,) : [Ni| > 1,i=1,2}
to uniquely identify x with Qxx = 05, I = N — ||Qx]|o [Lu et al, '07]

> Corollary: For mutually independent M € R™*N and Q = L on G = (V, E), the problem
Mx =y with ||[Lx|jo < N — I =k

has at most one solution, provided k > 1, if

(i) | m > 2k — 1 |, when the graph is connected,
(ii1) | m > 2k — 2 4 c |, when the graph is disconnected with ¢ components.
(ii2) 1 x € |, _, Wa, for Wa := N(Lp), subject to |Ai| < N — 1, (ii1) becomes [m>2k—c]|

> For a stable sampling scheme, m necessarily depends on In(L) and K, for L total subspaces with
maximum dimension K in a UoS [Blumensath et al, '09]

= Model-based Compressed Sensing (on Graphs)
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Conclusion and Future Work

> We have substantiated the discrepancy between the cosparse analysis and sparse synthesis models for the
graph Laplacian through subspace analysis

> We have characterized the functions defining the respective model subspaces on circulant graphs

> For the parametric graph Laplacian on circulant graphs, we have shown transitional properties between
model equivalence and non-equivalence

. E. Davies Analysis vs Synthesi: n Investigation of (Co)sparse Signal Models on Graphs 17 /19



Conclusion and Future Work

> We have substantiated the discrepancy between the cosparse analysis and sparse synthesis models for the
graph Laplacian through subspace analysis

> We have characterized the functions defining the respective model subspaces on circulant graphs

> For the parametric graph Laplacian on circulant graphs, we have shown transitional properties between
model equivalence and non-equivalence

= Develop refined UoS signal models on graphs with enhanced sampling schemes & recovery guarantees

For a comprehensive discussion, refer to arXiv

Analysis vs Synthesis with Structure - An Investigation of Union of Subspace Models on
Graphs
https://arxiv.org/abs/1811.04493
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Thank you.
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