Analysis vs Synthesis -An Investigation of (Co)sparse Signal Models on Graphs

Madeleine S. Kotzagiannidis, Mike E. Davies University of Edinburgh

GlobalSIP 2018

Anaheim, Nov 2018

- Characterize Sparsity on Graphs w.r.t. the graph connectivity & defining subspaces
- Signal Models: Tackle Analysis vs Synthesis Problem in the structured setting of graphs

- Characterize Sparsity on Graphs w.r.t. the graph connectivity & defining subspaces
- Signal Models: Tackle Analysis vs Synthesis Problem in the structured setting of graphs
- Establish discrepancy between Analysis & Synthesis view of graph Laplacian through subspace analysis

- Characterize Sparsity on Graphs w.r.t. the graph connectivity & defining subspaces
- Signal Models: Tackle Analysis vs Synthesis Problem in the structured setting of graphs
- Establish discrepancy between Analysis & Synthesis view of graph Laplacian through subspace analysis

For circulant graphs

- Develop closed-form expressions of functions defining the subspaces & concretize discrepancy
- Transition between model equivalence and non-equivalence for the parametric graph Laplacian
- Unify results to quantify uniqueness guarantees for signals in UoS models on graphs
- \Rightarrow Links between Graph Theory, PDEs & Linear Algebra render problem investigation feasible

Preliminaries: Signal Processing on Graphs

A graph G = (V, E) is defined by a vertex set $V = \{0, ..., N - 1\}$, with |V| = N, and edge set $E = \{E_0, ..., E_{M-1}\}$

The adjacency matrix A captures the connectivity of G, with

 $A_{i,j}>0, \ {
m if} \ i \ {
m and} \ j \ {
m are} \ {
m adjacent} \ (i
eq j), \quad A_{i,j}=0, \ {
m otherwise}$

and ${f D}$ is the diagonal degree matrix with $D_{i,i}=\sum_j {f A}_{i,j}$

- $\blacktriangleright\,$ The non-normalized graph Laplacian is given by ${\bf L}={\bf D}-{\bf A}$
- ▶ The oriented incidence matrix $\mathbf{S} \in \mathbb{R}^{|E| \times |V|}$ has entries

$$S_{k,i} = \sqrt{A_{i,j}}, \,\, S_{k,j} = -\sqrt{A_{i,j}},\,\, ext{if edge}\,\, E_k = \{i,j\} \,\, ext{is directed as}\,\, i o j$$

and we have $\mathbf{L} = \mathbf{S}^{\mathsf{T}} \mathbf{S}$

- We consider undirected, and (un-)weighted graphs without self-loops
- The graph signal x on G, with x : V → C s.t. x(i) is the sample value of x ∈ C^N at vertex i, is piecewise smooth w.r.t. L if Lx is sparse, i.e. ||Lx||₀ ≪ N

The Analysis vs Synthesis Problem

Synthesis

Analysis

- ► generate signal $\mathbf{x} = \mathbf{D}\mathbf{c}$, given dictionary $\mathbf{D} \in \mathbb{R}^{N \times M}$, $N \leq M$, and $\mathbf{c} \in \mathbb{R}^{M}$ with $||\mathbf{c}||_0 = k \ll M$ of sparse support Λ^c
 - ▶ subspace: $V_{\Lambda^c} := span(\mathbf{D}_j, j \in \Lambda^c)$

▶ given analysis operator $\mathbf{\Omega} \in \mathbb{R}^{M imes N}$, apply

constraint $|| {f \Omega} {f x} ||_0 = k \ll M$ with ${f \Omega}_\Lambda {f x} = {f 0}_\Lambda$

$$\Rightarrow$$
 Cosparsity: $I := M - ||\Omega \mathbf{x}||_0$ [Nam et al, '13]

• subspace: $W_{\Lambda} := N(\Psi_{\Lambda}\Omega)$

• In the non-singular case, the two are equivalent: $\mathbf{\Omega}^{-1} = \mathbf{D}$

- Prior Work: [Elad et al, '07], [Nam et al, '13], for full-rank operators; in general the two models are not equivalent
 - We consider square rank-deficient (difference) operators in the structured domain of graphs with $\Omega = L$ and $D = L^{\dagger}$ as the Moore-Penrose Pseudoinverse (MPP)
- \Rightarrow Characterize the underlying subspaces to understand how the models are fundamentally interrelated & uncover transitional properties

Matrix Ψ_{Λ} selects the rows of Ω in set Λ

The Cosparse Analysis Model on Graphs

Prop. 1

for z

The analysis subspace $W_{\Lambda} := N(\Psi_{\Lambda} L)$ on a connected graph G = (V, E) is given by

$$N(\Psi_{\Lambda}\mathsf{L}) = z\mathbf{1}_{N} + \mathsf{L}^{\dagger}\Psi_{\Lambda^{\mathsf{c}}}^{\mathcal{T}}\mathsf{W}\mathsf{c},$$

where $\mathbf{W} \in \mathbb{R}^{|\Lambda^{c}| \times |\Lambda^{c}| - 1}$

$$\mathbf{W} := \begin{pmatrix} |\Lambda^c| - 1 & 0 & \dots & 0 \\ -1 & |\Lambda^c| - 2 & 0 & \dots & 0 \\ & -1 & |\Lambda^c| - 3 & & \vdots \\ \vdots & & & & 0 \\ & & & & & 1 \\ -1 & -1 & \dots & & -1 \end{pmatrix}.$$

- We require the constraint W s.t. $\Psi_{\Lambda^c}^T$ Wc $\perp \mathbf{1}_N$ (Fredholm Alternative) on the solution subspaces
- $N(\Psi_{\Lambda} L)$ has rank $N |\Lambda| = |\Lambda^{c}|$ for $|\Lambda| < N$
- The subspace $\mathbf{L}^{\dagger} \Psi_{\Lambda c}^{T} \mathbf{W}$ is empty for $|\Lambda| \geq N 1$.

The constraint W has a zero-sum column structure, facilitating

$$\Psi_{\Lambda^c}^{\mathcal{T}}Wc=S^{\mathcal{T}}t$$

for suitable $\mathbf{c} \in \mathbb{R}^{|\Lambda^{\mathsf{c}}|-1}$ and $\mathbf{t} \in \mathbb{R}^{|\mathcal{E}|}$

▶ In general, any basis in $(\mathbf{e}_i - \mathbf{e}_j)$, $i, j \in \Lambda^c \subset V$, is acceptable, where $e_i(i) = 1$, $e_i(j) = 0$, $j \neq i$

The constraint W has a zero-sum column structure, facilitating

$$\Psi_{\Lambda^c}^{\mathcal{T}}Wc=S^{\mathcal{T}}t$$

for suitable $\boldsymbol{c} \in \mathbb{R}^{|\Lambda^{c}|-1}$ and $\boldsymbol{t} \in \mathbb{R}^{|\mathcal{E}|}$

- ▶ In general, any basis in $(\mathbf{e}_i \mathbf{e}_j)$, $i, j \in \Lambda^c \subset V$, is acceptable, where $e_i(i) = 1$, $e_i(j) = 0$, $j \neq i$
- Example

The constraint W has a zero-sum column structure, facilitating

$$\Psi_{\Lambda^c}^{\mathcal{T}}Wc=S^{\mathcal{T}}t$$

for suitable $\mathbf{c} \in \mathbb{R}^{|\Lambda^{\mathsf{c}}|-1}$ and $\mathbf{t} \in \mathbb{R}^{|\mathit{E}|}$

- ▶ In general: basis in $(\mathbf{e}_i \mathbf{e}_j)$, $i, j \in \Lambda^c \subset V$, is acceptable, where $e_i(i) = 1$, $e_i(j) = 0$, $j \neq i$
- Example

▶ The constraint W has a zero-sum column structure, facilitating

$$\Psi_{\Lambda^c}^{\mathcal{T}}Wc=S^{\mathcal{T}}t$$

for suitable $\boldsymbol{c} \in \mathbb{R}^{|\Lambda^{\mathsf{c}}|-1}$ and $\boldsymbol{t} \in \mathbb{R}^{|\textit{E}|}$

▶ In general: basis in $(\mathbf{e}_i - \mathbf{e}_j)$, $i, j \in \Lambda^c \subset V$, is acceptable, where $e_i(i) = 1$, $e_i(j) = 0$, $j \neq i$

$$\mathbf{S}^{T} = \begin{pmatrix} \mathbf{E}_{0} & & & \mathbf{E}_{4} & & & \mathbf{E}_{7} \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & -1 \end{pmatrix}$$

$$\mathbf{E}_{0} + \mathbf{E}_{4} + \mathbf{E}_{7} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{pmatrix} \notin \mathbf{E}$$

The Sparse Synthesis Model on Graphs

- Consider $\mathbf{x} = \mathbf{L}^{\dagger}\mathbf{c}$ on connected G, with $\mathbf{D} = \mathbf{L}^{\dagger}$ and sparse $\mathbf{c} \in \mathbb{R}^{N}$ of support $\Lambda^{c} \subset V$
- ▶ The MPP L^{\dagger} , with $LL^{\dagger} = I_N \frac{1}{N}J_N$ and $L^{\dagger}\mathbf{1}_N = \mathbf{0}_N$, is the discrete Green's function of L
- We have $L(L^{\dagger}S^{T}) = L(S^{\dagger}) = S^{T}$
- \Rightarrow Any piecewise smooth signal on G is at least 2-sparse w.r.t L, in the range of \mathbf{S}^{T}
- \blacktriangleright The analysis operation Lx = c characterizes the constrained synthesis representation

$$\mathbf{x} = \mathbf{L}^{\dagger} \sum_{j \in E_{\mathcal{S}}} \mathbf{S}_{j}^{T} = \sum_{j \in E_{\mathcal{S}}} \mathbf{S}_{j}^{\dagger}, \text{ with } \mathbf{c} = \sum_{j \in E_{\mathcal{S}}} \mathbf{S}_{j}^{T}$$

 \blacktriangleright The functions L^{\dagger} & S^{\dagger} encapsulate different orders of smoothness and hop-localization w.r.t. operators L^2 & L:

$$\mathbf{L}^{2}\mathbf{L}^{\dagger} = \mathbf{L}$$
 and $\mathbf{LS}^{\dagger} = \mathbf{S}^{T}$

and the locations of non-zeros in the range of \bm{L} and $\bm{S}^{\mathcal{T}}$ can be interpreted as its 'knots'

 \Rightarrow The Gram structure of L with sparse S^T reveals an underlying structured sparsity on graphs

Union of Subspaces Model - Comparison

Thm. 1

• On a connected graph, the cosparse analysis model, $N(\Psi_{\Lambda}\mathbf{L}) = span(\mathbf{1}_N; \mathbf{L}^{\dagger}(\mathbf{e}_i - \mathbf{e}_j), i, j \in \Lambda^c)$, is a **constrained** instance of the sparse synthesis model, $span(\mathbf{L}_j^{\dagger}, j \in \Lambda^c)$, up to a **translation** by $N(\mathbf{L}) = \mathbf{1}_N$.

Signals x which satisfy $||Lx||_0 = N - I$ (or $L_{\Lambda}x = 0_{\Lambda}$) are in the analysis UoS of cardinality $|\Lambda| = I$

$$\bigcup_{|\Lambda|=l} W_{\Lambda}$$
, for $W_{\Lambda} := N(\mathbf{L}_{\Lambda})$

Signals x which satisfy $\mathbf{x} = \mathbf{L}^{\dagger} \mathbf{c}$ with $||\mathbf{c}||_0 = k$ (or $\mathbf{x} = \mathbf{L}_{\Lambda c}^{\dagger} \mathbf{c}_{\Lambda c}$) are in the synthesis UoS of cardinality $|\Lambda^c| = k$

$$\bigcup_{|\Lambda^{\mathsf{c}}|=k} V_{\Lambda^{\mathsf{c}}}, \text{ for } V_{\Lambda^{\mathsf{c}}} := span(\mathbf{L}_{j}^{\dagger}, j \in \Lambda^{\mathsf{c}})$$

	Synthesis			Analysis		
Sparsity	Dim.	Subsp.	No.	Dim.	Subsp.	No.
1	1	L_j^\dagger	N	1	1 _N	1
2	2	$\textit{span}(\mathbf{L}_{j}^{\dagger}, j \in \Lambda^{c})$	$\binom{N}{2}$	2	$\textit{span}(1_{\textit{N}}; \mathbf{L}^{\dagger}(\mathbf{e}_{i}-\mathbf{e}_{j}), i, j \in \Lambda^{c})$	$\binom{N}{2}$
k ≪ N	k	$\textit{span}(\mathbf{L}_{j}^{\dagger}, j \in \Lambda^{c})$	$\binom{N}{k}$	k	$\textit{span}(1_N; \mathbf{L}^{\dagger}(\mathbf{e}_i - \mathbf{e}_j), i, j \in \Lambda^{c})$	$\binom{N}{k}$

Table 1: Subspace Characterization of L for a Connected Graph

Union of Subspaces Model - Comparison

Thm. 1

On a connected graph, the cosparse analysis model, $N(\Psi_{\Lambda}\mathbf{L}) = span(\mathbf{1}_N; \mathbf{L}^{\dagger}(\mathbf{e}_i - \mathbf{e}_j), i, j \in \Lambda^c)$, is a **constrained** instance of the sparse synthesis model, $span(\mathbf{L}_j^{\dagger}, j \in \Lambda^c)$, up to a **translation** by $N(\mathbf{L}) = \mathbf{1}_N$.

Signals x which satisfy $||Lx||_0 = N - I$ (or $L_{\Lambda}x = \mathbf{0}_{\Lambda}$) are in the analysis UoS of cardinality $|\Lambda| = I$

$$\bigcup_{|\Lambda|=l} W_{\Lambda}$$
, for $W_{\Lambda} := N(\mathbf{L}_{\Lambda})$

Signals x which satisfy $\mathbf{x} = \mathbf{L}^{\dagger} \mathbf{c}$ with $||\mathbf{c}||_{0} = k$ (or $\mathbf{x} = \mathbf{L}_{\Lambda^{c}}^{\dagger} \mathbf{c}_{\Lambda^{c}}$) are in the synthesis UoS of cardinality $|\Lambda^{c}| = k$

$$\bigcup_{|\Lambda^{\mathsf{c}}|=k} V_{\Lambda^{\mathsf{c}}}, \text{ for } V_{\Lambda^{\mathsf{c}}} := span(\mathsf{L}_{j}^{\dagger}, j \in \Lambda^{\mathsf{c}})$$

	Synthesis			Analysis		
Sparsity	Dim.	Subsp.	No.	Dim.	Subsp.	No.
1	1	L_j^\dagger	N	1	1 _N	1
2	2	$\textit{span}(\mathbf{L}_{j}^{\dagger}, j \in \Lambda^{c})$	$\binom{N}{2}$	2	$\textit{span}(1_{\textit{N}}; \mathbf{L}^{\dagger}(\mathbf{e}_{i} - \mathbf{e}_{j}), i, j \in \Lambda^{c})$	$\binom{N}{2}$
$k \ll N$	k	$\textit{span}(\mathbf{L}_{j}^{\dagger}, j \in \Lambda^{c})$	$\binom{N}{k}$	k	$\textit{span}(1_{\textit{N}}; L^{\dagger}(\mathbf{e}_{i}-\mathbf{e}_{j}), i, j \in \Lambda^{c})$	$\binom{N}{k}$

Table 1: Subspace Characterization of L for a Connected Graph

► If N(L) is omitted, W_{Λ} has dimension k - 1 and $\bigcup_{|\Lambda| = N - k} W_{\Lambda} \subseteq \bigcup_{|\Lambda^c| = k} V_{\Lambda^c}$

Union of Subspaces Model: Disconnected Graph

- G = (V, E) has t connected components C_k s.t. $V = \bigcup_{k=1}^t C_k$, with $|C_k| = N_k$
- ► N(Ψ_ΛL) is given as the span of

$$\mathbf{L}^{\dagger} \boldsymbol{\Psi}_{\Lambda^{\mathsf{C}}}^{\mathcal{T}} \mathbf{W} = \begin{bmatrix} \mathsf{L}_{1}^{\dagger} \tilde{\boldsymbol{\Psi}}_{\Lambda_{1}^{\mathsf{C}}}^{\mathcal{T}} \mathbf{W}_{1} & 0 & \dots \\ 0 & \mathsf{L}_{2}^{\dagger} \tilde{\boldsymbol{\Psi}}_{\Lambda_{2}^{\mathsf{C}}}^{\mathcal{T}} \mathbf{W}_{2} & 0 & \dots \\ \dots & & \\ 0 & \dots & \mathsf{L}_{t}^{\dagger} \tilde{\boldsymbol{\Psi}}_{\Lambda_{k}^{\mathsf{C}}}^{\mathcal{T}} \mathbf{W}_{t} \end{bmatrix}, \text{ with } \tilde{\boldsymbol{\Psi}}_{\Lambda_{k}} \in \mathbb{R}^{|\Lambda_{k}| \times N_{k}} \text{ and } C_{k} = \Lambda_{k} \cup \Lambda_{k}^{\mathsf{c}}$$

of rank at least $|\Lambda^c| - t$, where $\mathbf{1}_{N_k}^T \tilde{\mathbf{\Psi}}_{\Lambda_k^c}^T \mathbf{W}_k = 0$, and $N(\mathbf{L}) = \{\mathbf{1}_{C_1}, ..., \mathbf{1}_{C_t}\}$ of rank t

Union of Subspaces Model: Disconnected Graph

- G = (V, E) has t connected components C_k s.t. $V = \bigcup_{k=1}^t C_k$, with $|C_k| = N_k$
- ► N(Ψ_ΛL) is given as the span of

$$\mathbf{L}^{\dagger} \mathbf{\Psi}_{\Lambda^{\mathsf{c}}}^{\mathsf{T}} \mathbf{W} = \begin{bmatrix} \mathsf{L}_{1}^{\dagger} \tilde{\mathbf{\Psi}}_{\Lambda^{\mathsf{c}}_{1}}^{\mathsf{r}} \mathsf{W}_{1} & 0 & \dots \\ 0 & \mathsf{L}_{2}^{\dagger} \tilde{\mathbf{\Psi}}_{\Lambda^{\mathsf{c}}_{2}}^{\mathsf{r}} \mathsf{W}_{2} & 0 & \dots \\ \dots & & \\ 0 & \dots & \mathsf{L}_{t}^{\dagger} \tilde{\mathbf{\Psi}}_{\Lambda^{\mathsf{c}}_{t}}^{\mathsf{T}} \mathsf{W}_{t} \end{bmatrix}, \text{ with } \tilde{\mathbf{\Psi}}_{\Lambda_{k}} \in \mathbb{R}^{|\Lambda_{k}| \times N_{k}} \text{ and } C_{k} = \Lambda_{k} \cup \Lambda_{k}^{\mathsf{c}}$$

of rank at least $|\Lambda^c| - t$, where $\mathbf{1}_{N_k}^T \tilde{\mathbf{\Psi}}_{\Lambda_k^c}^T \mathbf{W}_k = 0$, and $N(\mathbf{L}) = \{\mathbf{1}_{C_1}, ..., \mathbf{1}_{C_t}\}$ of rank t

The constraints form a Structured Sparsity Model with blocks (components) C_k, whose coefficients respectively sum to 0

$$\left. \begin{array}{l} \mathbf{c_4} + \mathbf{c_8} = 0 \\ \mathbf{c_{11}} + \mathbf{c_{16}} + \mathbf{c_{17}} = 0 \\ \mathbf{c_{20}} + \mathbf{c_{23}} = 0 \end{array} \right.$$

For $k = |\Lambda^c|$ with $k < N_i$, the synthesis UoS has $\binom{N}{k}$ subspaces V_{Λ^c} of dimension k, while the analysis UoS has $L < \binom{N}{k}$ subspaces W_{Λ} of dimensions ranging from k to k + t - 1

⇒ The dimension & number of analysis subspaces become non-uniform

۲

▶ On the simple cycle G_C , the rows (columns) of L_C have 2 vanishing moments [MSK, '17] & L_C^{\dagger} has entries $L_C^{\dagger}(i,j) = \frac{(N-1)(N+1)}{12N} - \frac{1}{2}|j-i| + \frac{(j-i)^2}{2N}$, for $0 \le i, j \le N-1$ [Ellis, '03]

▶ On the simple cycle G_C , the rows (columns) of L_C have 2 vanishing moments [MSK, '17] & L_C^{\dagger} has entries $L_C^{\dagger}(i,j) = \frac{(N-1)(N+1)}{12N} - \frac{1}{2}|j-i| + \frac{(j-i)^2}{2N}$, for $0 \le i, j \le N-1$ [Ellis, '03]

▶ Differences $\mathbf{L}_{C}^{\dagger}(\mathbf{e}_{i} - \mathbf{e}_{j}), i, j \in V$, are piecewise linear

- ▶ On the simple cycle G_C , the rows (columns) of \mathbf{L}_C have 2 vanishing moments [MSK, '17] & \mathbf{L}_C^{\dagger} has entries $L_C^{\dagger}(i,j) = \frac{(N-1)(N+1)}{12N} \frac{1}{2}|j-i| + \frac{(j-i)^2}{2N}$, for $0 \le i, j \le N 1$ [Ellis, '03]
- ▶ Differences $\mathbf{L}_{C}^{\dagger}(\mathbf{e}_{i} \mathbf{e}_{j}), i, j \in V$, are piecewise linear
- ▶ \mathbf{S}_{C}^{\dagger} of circulant incidence matrix \mathbf{S}_{C} with first row $[1 \ -1 \ 0 \ ... \ 0]$ has entries

$$S^{\dagger}_{\mathcal{C}}(i,j) = rac{N-1}{2N} - rac{j-i}{N}, ext{ for } i \leq j, \quad 0 \leq i,j \leq N-1$$

- ▶ On the simple cycle G_C , the rows (columns) of \mathbf{L}_C have 2 vanishing moments [MSK, '17] & \mathbf{L}_C^{\dagger} has entries $L_C^{\dagger}(i,j) = \frac{(N-1)(N+1)}{12N} \frac{1}{2}|j-i| + \frac{(j-i)^2}{2N}$, for $0 \le i, j \le N-1$ [Ellis, '03]
- ▶ Differences $\mathbf{L}_{C}^{\dagger}(\mathbf{e}_{i} \mathbf{e}_{j}), i, j \in V$, are piecewise linear
- \mathbf{S}_{C}^{\dagger} of circulant incidence matrix \mathbf{S}_{C} with first row $[1 1 \ 0 \ ... \ 0]$ has entries

$$S_{C}^{\dagger}(i,j) = \frac{N-1}{2N} - \frac{j-i}{N}$$
, for $i \le j$, $0 \le i, j \le N-1$

- ► The sparse synthesis model on G_C , $span((\mathbf{L}_C^{\dagger})_j, j \in \Lambda^c)$, generates up to piecewise quadratic polynomials, orthogonal to $\mathbf{1}_N$
- The cosparse analysis model on G_C, defined by

$$N(\Psi_{\Lambda}\mathsf{L}_{C}) = span(\mathbf{1}_{N}; \mathsf{L}_{C}^{\dagger}(\mathbf{e}_{i} - \mathbf{e}_{j}), \ i, j \in \Lambda^{c}), \text{ with } \mathsf{L}_{C}^{\dagger}(\mathbf{e}_{i} - \mathbf{e}_{j}) = \sum_{k \in E_{S}} t_{k}(\mathsf{S}_{C}^{\dagger})_{k}$$

generates up to piecewise linear polynomials, for suitable edge sequence $E_S \subset E$, and $t_k \in \mathbb{R}$.

- \Rightarrow broad representation range w.r.t. both L_C^{\dagger} and S_C^{\dagger}
- synthesis interpretation of (classical) vanishing moment constraints

General Circulant Graphs

- \Rightarrow Models for general circulant graphs can be developed on the basis of the simple cycle:
- ▶ A graph G_S is circulant w.r.t. generating set $S = \{s_i\}_{i=1}^M$, $0 < s_k \le N/2$, if nodes $(i, (i \pm s_k)_N)$ are adjacent, $\forall s_k \in S \Rightarrow G_S$ is circulant if L is circulant

General Circulant Graphs

- \Rightarrow Models for general circulant graphs can be developed on the basis of the simple cycle:
- ▶ A graph G_S is circulant w.r.t. generating set $S = \{s_i\}_{i=1}^M$, $0 < s_k \le N/2$, if nodes $(i, (i \pm s_k)_N)$ are adjacent, $\forall s_k \in S \Rightarrow G_S$ is circulant if L is circulant
- ▶ Lemma: On connected G_S , with $s = 1 \in S$ & bandwidth M < N/2, we can decompose L as $L = P_{G_S}L_C$, where P_{G_S} is circulant positive definite of bandwidth M 1.
- P_{GS} encapsulates the connectivity information of GS
- ▶ We have $\mathbf{L}^{\dagger} = \mathbf{P}_{G_{S}}^{-1} \mathbf{L}_{C}^{\dagger}$, where the entries of $\mathbf{P}_{G_{S}}^{-1}$ exhibit exponential decay (in absolute value), 'perturbing' \mathbf{L}_{C}^{\dagger}
- The columns of S[†] are 'perturbed' piecewise linear polynomials

General Circulant Graphs

Thm. 2

The cosparse analysis model on circulant graphs generates perturbed piecewise linear polynomials $N(\Psi_{\Lambda}L) = z\mathbf{1}_{N} + \mathbf{P}_{G_{S}}^{-1}\mathbf{L}_{C}^{\dagger}\Psi_{\Lambda^{c}}^{T}\mathbf{W}\mathbf{c}_{1}, \mathbf{c}_{1} \in \mathbb{R}^{|\Lambda^{c}|-1}$, which are translated by $\mathbf{1}_{N}$, while the sparse synthesis model generates perturbed piecewise quadratic polynomials, $\mathbf{P}_{G_{S}}^{-1}\mathbf{L}_{C}^{\dagger}\Psi_{\Lambda^{c}}^{T}\mathbf{c}_{2}, \mathbf{c}_{2} \in \mathbb{R}^{|\Lambda^{c}|}$.

 \Rightarrow The analysis constraint reduces the order of the functions which define its subspaces

The Generalized Graph Laplacian

- ▶ Parametric $\mathbf{L}_{\alpha} = d_{\alpha}\mathbf{I}_{N} \mathbf{A}$, with $d_{\alpha} = \sum_{j=1}^{M} 2d_{j} \cos(\alpha j)$, $\alpha \in \mathbb{C}$, and weights $d_{j} = A_{i,(j+i)N}$, annihilates $\mathbf{x} = e^{\pm i\alpha \mathbf{t}}$, $\mathbf{t} = [0 \dots N 1]$ on circulant graphs of bandwidth M [MSK, '17]
- On the simple cycle, the rows (columns) of $L_{C,\alpha}$ have 2 exponential vanishing moments
- ▶ $L_{C,\alpha}$ is singular for $\alpha = 2\pi k/N$, $k \in \mathbb{N}$, with $N(L_{C,\alpha}) = span(e^{i\alpha t}, e^{-i\alpha t})$, & non-singular o/w

The Generalized Graph Laplacian

- ▶ Parametric $\mathbf{L}_{\alpha} = d_{\alpha}\mathbf{I}_{N} \mathbf{A}$, with $d_{\alpha} = \sum_{j=1}^{M} 2d_{j} \cos(\alpha j)$, $\alpha \in \mathbb{C}$, and weights $d_{j} = A_{i,(j+i)N}$, annihilates $\mathbf{x} = e^{\pm i\alpha \mathbf{t}}$, $\mathbf{t} = [0 \dots N 1]$ on circulant graphs of bandwidth M [MSK, '17]
- On the simple cycle, the rows (columns) of $L_{C,\alpha}$ have 2 exponential vanishing moments
- ► $L_{C,\alpha}$ is singular for $\alpha = 2\pi k/N$, $k \in \mathbb{N}$, with $N(L_{C,\alpha}) = span(e^{i\alpha t}, e^{-i\alpha t})$, & non-singular o/w
- ▶ Lemma 1 For $\alpha \neq 2\pi k/N$, $k \in \mathbb{N}$, $L_{C,\alpha}^{-1}$ has entries

$$L_{C,\alpha}^{-1}(m,n) = \frac{1}{(-e^{-i\alpha} + e^{i\alpha})(-1 + e^{i\alpha N})} e^{i\alpha ||n-m||} + \frac{1}{(e^{-i\alpha} - e^{i\alpha})(-1 + e^{-i\alpha N})} e^{-i\alpha ||n-m||}$$

$$0 \le m, n \le N - 1.$$

- \Rightarrow The rows (columns) of $L_{\mathcal{C},\alpha}^{-1}$ are complex exponentials
- ▶ Lemma 2 For $\alpha = 2\pi k/N$, $k \in \mathbb{N}$ and $\alpha \neq 0, k\pi$, $\mathsf{L}_{C,\alpha}^{\dagger}$ has entries

$$L_{C,\alpha}^{\dagger}(m,n) = \frac{e^{i\alpha}}{2N} \left(\frac{2|n-m|}{(-1+e^{2i\alpha})+(N-1)-e^{2i\alpha}(N+1)}{(-1+e^{2i\alpha})^2} \right) e^{i\alpha|n-m|}$$
$$\frac{e^{-i\alpha}}{2N} \left(\frac{2|n-m|}{(-1+e^{-2i\alpha})+(N-1)-e^{-2i\alpha}(N+1)}}{(-1+e^{-2i\alpha})^2} \right) e^{-i\alpha|n-m|}, \ 0 \le m, n \le N-1$$

 \Rightarrow The rows (columns) of $L^{\dagger}_{\mathcal{C},\alpha}$ are linear complex exponential polynomials

+

The Generalized Graph Laplacian

- On general circulant graphs G_S , we have $\mathbf{L}_{\alpha} = \mathbf{L}_{\mathcal{C},\alpha} \mathbf{P}_{\alpha}$, where \mathbf{P}_{α} is circulant of bandwidth M 1 and depends on the graph connectivity
- ▶ \mathbf{P}_{α} is positive definite up to certain $\alpha \in \mathbb{C}$ and G_{S} , then \mathbf{P}_{α}^{-1} invokes a localized perturbation

Thm. 3

For $\alpha \neq 2\pi k/N$, $k \in \mathbb{N}$, the cosparse analysis and sparse synthesis models of L_{α} are equivalent, generating perturbed complex exponentials

$$\mathbf{P}_{\alpha}^{-1}\mathbf{L}_{\mathcal{C},\alpha}^{-1}\boldsymbol{\Psi}_{\Lambda^{\mathsf{c}}}^{\mathcal{T}},\ \Lambda^{\mathsf{c}}\subset V.$$

For $\alpha = 2\pi k/N$, $\alpha \neq 0, k\pi, k \in \mathbb{N}$, the sparse synthesis model generates **perturbed linear** complex exponential polynomials

$$\mathbf{P}_{\alpha}^{-1}\mathbf{L}_{\mathcal{C},\alpha}^{\dagger}\mathbf{\Psi}_{\Lambda^{\mathsf{c}}}^{\mathcal{T}},\ \Lambda^{\mathsf{c}}\subset V.$$

The cosparse analysis model generates the constrained, translated subspaces

$$\mathit{N}(\mathbf{L}_{\alpha}) + \mathbf{P}_{\alpha}^{-1} \mathbf{L}_{\mathcal{C},\alpha}^{\dagger} \mathbf{\Psi}_{\Lambda^{c}}^{\mathcal{T}} \mathbf{W}_{\alpha} \mathbf{c}, \ \Lambda^{c} \subset \mathit{V}_{2}$$

for constraint $\mathbf{W}_{\alpha} \in \mathbb{C}^{|\Lambda^{\mathsf{c}}| \times |\Lambda^{\mathsf{c}}| - 2}$ such that $\Psi_{\Lambda^{\mathsf{c}}}^{\mathsf{T}}(\mathbf{W}_{\alpha})_{j} \perp e^{\pm i\alpha t}$.

If $\Psi_{\Lambda^c}^T W_{\alpha} c = (L_{C,\alpha})_j$ for some $j \in V$, this reduces to perturbed complex exponentials

$$N(\mathbf{L}_{\alpha}) + \mathbf{P}_{\alpha}^{-1} \left(\mathbf{I}_{N} - \frac{1}{N} \mathbf{E}_{\alpha} \right) \mathbf{\tilde{c}}, \ \text{for suitable } \mathbf{\tilde{c}} \in \mathbb{C}^{N}$$

where \mathbf{E}_{α} is the projection onto $N(\mathbf{L}_{\alpha})$, and is comparable in order to the case $\alpha \neq 2\pi k/N, \ k \in \mathbb{N}$.

For $\alpha = 0$, this reduces to the graph Laplacian L

Uniqueness Guarantees

- Suppose x belongs to a graph Laplacian based UoS model on an undirected graph:
- ⇒ Identify the unique (co)sparse solution of $\mathbf{y} = \mathbf{M}\mathbf{x}$, for suitable $\mathbf{M} \in \mathbb{R}^{m \times N}$, m < N, with linearly independent rows

• Given mutually independent **M** and Ω , we require $m \geq \tilde{\kappa}_{\Omega}(I)$, with

$$\tilde{\kappa}_{\Omega}(I) := \max\{ \dim(W_{\Lambda_1} + W_{\Lambda_2}) : |\Lambda_i| \ge I, i = 1, 2 \}$$

to uniquely identify **x** with $\Omega_{\Lambda} \mathbf{x} = \mathbf{0}_{\Lambda}$, $l = N - ||\Omega \mathbf{x}||_0$ [Lu et al, '07]

Uniqueness Guarantees

- Suppose x belongs to a graph Laplacian based UoS model on an undirected graph:
- ⇒ Identify the unique (co)sparse solution of $\mathbf{y} = \mathbf{M}\mathbf{x}$, for suitable $\mathbf{M} \in \mathbb{R}^{m \times N}$, m < N, with linearly independent rows

• Given mutually independent **M** and Ω , we require $m \geq \tilde{\kappa}_{\Omega}(l)$, with

$$\tilde{\kappa}_{\Omega}(I) := \max\{ \dim(W_{\Lambda_1} + W_{\Lambda_2}) : |\Lambda_i| \ge I, i = 1, 2 \}$$

to uniquely identify x with $\Omega_\Lambda x = \boldsymbol{0}_\Lambda, \ \textit{I} = \textit{N} - ||\Omega x||_0$ [Lu et al, '07]

▶ Corollary: For mutually independent $M \in \mathbb{R}^{m \times N}$ and $\Omega = L$ on G = (V, E), the problem

$$\mathbf{M}\mathbf{x} = \mathbf{y}$$
 with $||\mathbf{L}\mathbf{x}||_0 \leq N - I = k$

has at most one solution, provided k > 1, if

- (i) $m \ge 2k-1$, when the graph is connected,
- (ii1) $m \ge 2k 2 + c$, when the graph is disconnected with c components.

(*ii*2) If
$$\mathbf{x} \in \bigcup_{|\Lambda|=l} W_{\Lambda}$$
, for $W_{\Lambda} := N(\mathbf{L}_{\Lambda})$, subject to $|\Lambda_i| < N_i - 1$, (*ii*1) becomes $m \ge 2k - c$

- For a stable sampling scheme, m necessarily depends on ln(L) and K, for L total subspaces with maximum dimension K in a UoS [Blumensath et al, '09]
- ⇒ Model-based Compressed Sensing (on Graphs)

Conclusion and Future Work

- We have substantiated the discrepancy between the cosparse analysis and sparse synthesis models for the graph Laplacian through subspace analysis
- ▶ We have characterized the functions defining the respective model subspaces on circulant graphs
- For the parametric graph Laplacian on circulant graphs, we have shown transitional properties between model equivalence and non-equivalence

Conclusion and Future Work

- We have substantiated the discrepancy between the cosparse analysis and sparse synthesis models for the graph Laplacian through subspace analysis
- > We have characterized the functions defining the respective model subspaces on circulant graphs
- For the parametric graph Laplacian on circulant graphs, we have shown transitional properties between model equivalence and non-equivalence
- \Rightarrow Develop refined UoS signal models on graphs with enhanced sampling schemes & recovery guarantees

For a comprehensive discussion, refer to arXiv

Analysis vs Synthesis with Structure - An Investigation of Union of Subspace Models on Graphs https://arxiv.org/abs/1811.04493

Thank you.

References I

- M. Elad, P. Milanfar, R. Rubinstein, Analysis versus synthesis in signal priors, Inverse Problems 23 (3) (2007) 947.
- S. Nam, M. Davies, M. Elad, R. Gribonval, The cosparse analysis model and algorithms, Applied and Computational Harmonic Analysis 34 (1) (2013) 30-56.
- M. S. Kotzagiannidis, P. L. Dragotti, Splines and wavelets on circulant graphs, Applied and Computational Harmonic Analysis (2017), in press, https://doi.org/10.1016/j.acha.2017.10.002
- R. Ellis, Discrete Green's functions for products of regular graphs, arXiv preprint math/0309080. (2003)
- Y. S. Volkov, Inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines, Numerical Analysis and Applications 3 (3) (2010) 199-207.
- Y. M. Lu, M. N. Do, A theory for sampling signals from a union of subspaces, IEEE Transactions on Signal Processing 56 (2008) 2334-2345.
 - T. Blumensath, M. Davies, Sampling theorems for signals from the union of finite-dimensional linear subspaces, IEEE Transactions on Information Theory 55 (4) (2009) 1872-1882.