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Motivation and Objectives

I Characterize Sparsity on Graphs - w.r.t. the graph connectivity & defining subspaces

I Signal Models: Tackle Analysis vs Synthesis Problem in the structured setting of graphs

I Establish discrepancy between Analysis & Synthesis view of graph Laplacian through subspace
analysis

For circulant graphs
I Develop closed-form expressions of functions defining the subspaces & concretize discrepancy
I Transition between model equivalence and non-equivalence for the parametric graph Laplacian

I Unify results to quantify uniqueness guarantees for signals in UoS models on graphs

⇒ Links between Graph Theory, PDEs & Linear Algebra render problem investigation feasible
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Preliminaries: Signal Processing on Graphs

I A graph G = (V , E) is defined by a vertex set V = {0, ...,N − 1}, with |V | = N, and edge set
E = {E0, ..., EM−1}

5
3

4
0

1
2

I The adjacency matrix A captures the connectivity of G, with

Ai,j > 0, if i and j are adjacent (i 6= j), Ai,j = 0, otherwise

and D is the diagonal degree matrix with Di,i =
∑

j
Ai,j

I The non-normalized graph Laplacian is given by L = D− A

I The oriented incidence matrix S ∈ R|E|×|V | has entries

Sk,i =
√

Ai,j , Sk,j = −
√

Ai,j , if edge Ek = {i, j} is directed as i → j

and we have L = ST S
I We consider undirected, and (un-)weighted graphs without self-loops

I The graph signal x on G, with x : V → C s.t. x(i) is the sample value of x ∈ CN at vertex i , is
piecewise smooth w.r.t. L if Lx is sparse, i.e. ||Lx||0 � N
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The Analysis vs Synthesis Problem

Synthesis

I generate signal x = Dc, given dictionary

D ∈ RN×M , N ≤ M, and c ∈ RM with

||c||0 = k � M of sparse support Λc

I subspace: VΛc := span(Dj , j ∈ Λc)

Analysis

I given analysis operator Ω ∈ RM×N , apply

constraint ||Ωx||0 = k � M with ΩΛx = 0Λ

⇒ Cosparsity: l := M − ||Ωx||0 [Nam et al, ’13]

I subspace: WΛ := N(ΨΛΩ)

I In the non-singular case, the two are equivalent: Ω−1 = D

I Prior Work: [Elad et al, ’07], [Nam et al, ’13], for full-rank operators; in general the two models are
not equivalent

I We consider square rank-deficient (difference) operators in the structured domain of graphs with
Ω = L and D = L† as the Moore-Penrose Pseudoinverse (MPP)

⇒ Characterize the underlying subspaces to understand how the models are fundamentally interrelated
& uncover transitional properties

Matrix ΨΛ selects the rows of Ω in set Λ
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The Cosparse Analysis Model on Graphs

I

Prop. 1
The analysis subspace WΛ := N(ΨΛL) on a connected graph G = (V , E) is given by

N(ΨΛL) = z1N + L†ΨT
Λc Wc,

where W ∈ R|Λ
c|×|Λc|−1

W :=



|Λc| − 1 0 . . . 0
−1 |Λc| − 2 0 . . . 0

−1 |Λc| − 3
...

...
0
1

−1 −1 . . . −1

.

for z ∈ R, c ∈ R|Λ
c|−1.

I We require the constraint W s.t.ΨT
Λc Wc ⊥ 1N (Fredholm Alternative) on the solution subspaces

I N(ΨΛL) has rank N − |Λ| = |Λc| for |Λ| < N
I The subspace L†ΨT

Λc W is empty for |Λ| ≥ N − 1.
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Analysis Constraints
I The constraint W has a zero-sum column structure, facilitating

ΨT
Λc Wc = ST t

for suitable c ∈ R|Λ
c|−1 and t ∈ R|E|

I In general, any basis in (ei − ej ), i, j ∈ Λc ⊂ V , is acceptable, where ei (i) = 1, ei (j) = 0, j 6= i

I Example

ST =




1 1 1 1 0 0 0 0 0 0 0 0
−1 0 0 0 1 1 1 0 0 0 0 0

0 −1 0 0 −1 0 0 1 1 0 0 0
0 0 0 0 0 −1 0 −1 0 1 1 0
0 0 −1 0 0 0 0 0 −1 −1 0 1
0 0 0 −1 0 0 −1 0 0 0 −1 −1

0

1

23

4

5

0

12

3

4 5
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The Sparse Synthesis Model on Graphs

I Consider x = L†c on connected G, with D = L† and sparse c ∈ RN of support Λc ⊂ V

I The MPP L†, with LL† = IN − 1
N JN and L†1N = 0N , is the discrete Green’s function of L

I We have L(L†ST ) = L(S†) = ST

⇒ Any piecewise smooth signal on G is at least 2-sparse w.r.t L, in the range of ST

I The analysis operation Lx = c characterizes the constrained synthesis representation

x = L†
∑
j∈ES

ST
j =
∑
j∈ES

S†j , with c =
∑
j∈ES

ST
j

I The functions L† & S† encapsulate different orders of smoothness and hop-localization w.r.t.
operators L2 & L:

L2L† = L and LS† = ST

and the locations of non-zeros in the range of L and ST can be interpreted as its ‘knots’

⇒ The Gram structure of L with sparse ST reveals an underlying structured sparsity on graphs
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Union of Subspaces Model - Comparison

I

Thm. 1
On a connected graph, the cosparse analysis model, N(ΨΛL) = span(1N ; L†(ei − ej ), i, j ∈ Λc), is a
constrained instance of the sparse synthesis model, span(L†j , j ∈ Λc), up to a translation by
N(L) = 1N .

I Signals x which satisfy ||Lx||0 = N − l (or LΛx = 0Λ) are in the analysis UoS of cardinality |Λ| = l⋃
|Λ|=l

WΛ, for WΛ := N(LΛ)

I Signals x which satisfy x = L†c with ||c||0 = k (or x = L†Λc cΛc ) are in the synthesis UoS of cardinality
|Λc| = k ⋃

|Λc|=k
VΛc , for VΛc := span(L†j , j ∈ Λc)

Synthesis Analysis
Sparsity Dim. Subsp. No. Dim. Subsp. No.

1 1 L†j N 1 1N 1

2 2 span(L†j , j ∈ Λc)
(

N
2

)
2 span(1N ; L†(ei − ej ), i, j ∈ Λc)

(
N
2

)
k � N k span(L†j , j ∈ Λc)

(
N
k

)
k span(1N ; L†(ei − ej ), i, j ∈ Λc)

(
N
k

)
Table 1: Subspace Characterization of L for a Connected Graph
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Union of Subspaces Model - Comparison

II

Thm. 1
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Table 1: Subspace Characterization of L for a Connected Graph

I If N(L) is omitted, WΛ has dimension k − 1 and
⋃
|Λ|=N−k

WΛ ⊆
⋃
|Λc|=k

VΛc
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Union of Subspaces Model: Disconnected Graph
I G = (V , E) has t connected components Ck s.t. V =

⋃t
k=1

Ck , with |Ck | = Nk

I N(ΨΛL) is given as the span of

L†ΨT
Λc W =


L†1 Ψ̃T

Λc
1

W1 0 . . .

0 L†2 Ψ̃T
Λc

2
W2 0 . . .

. . .

0 . . . L†t Ψ̃T
Λc

t
Wt

, with Ψ̃Λk ∈ R|Λk |×Nk and Ck = Λk ∪ Λc
k

of rank at least |Λc| − t, where 1T
Nk

Ψ̃T
Λc

k
Wk = 0, and N(L) = {1C1 , ..., 1Ct } of rank t

I The constraints form a Structured Sparsity Model with blocks (components) Ck , whose coefficients
respectively sum to 0

c4 + c8 = 0

c11 + c16 + c17 = 0

c20 + c23 = 0

I For k = |Λc| with k < Ni , the synthesis UoS has
(

N
k

)
subspaces VΛc of dimension k, while the

analysis UoS has L <
(

N
k

)
subspaces WΛ of dimensions ranging from k to k + t − 1

⇒ The dimension & number of analysis subspaces become non-uniform
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The Simple Cycle
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I On the simple cycle GC , the rows (columns) of LC have 2 vanishing moments [MSK, ’17] & L†C has

entries L†C (i, j) = (N−1)(N+1)
12N − 1

2 |j − i| + (j−i)2
2N , for 0 ≤ i, j ≤ N − 1 [Ellis, ’03]

I Differences L†C (ei − ej ), i, j ∈ V , are piecewise linear

I S†C of circulant incidence matrix SC with first row [1 − 1 0 ... 0] has entries

S†C (i, j) = N−1
2N −

j−i
N , for i ≤ j, 0 ≤ i, j ≤ N − 1

I The sparse synthesis model on GC , span((L†C )j , j ∈ Λc), generates up to piecewise quadratic
polynomials, orthogonal to 1N

I The cosparse analysis model on GC , defined by

N(ΨΛLC ) = span(1N ; L†C (ei − ej ), i, j ∈ Λc), with L†C (ei − ej ) =
∑
k∈ES

tk (S†C )k

generates up to piecewise linear polynomials, for suitable edge sequence ES ⊂ E , and tk ∈ R.

⇒ broad representation range w.r.t. both L†C and S†C
⇒ synthesis interpretation of (classical) vanishing moment constraints
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General Circulant Graphs

(a) S = {1} (b) S = {1, 3} (c) S = {1, 2, 3, 4}

⇒ Models for general circulant graphs can be developed on the basis of the simple cycle:

I A graph GS is circulant w.r.t. generating set S = {si}M
i=1, 0 < sk ≤ N/2, if nodes (i, (i ± sk )N )

are adjacent, ∀sk ∈ S ⇒ GS is circulant if L is circulant

I Lemma: On connected GS , with s = 1 ∈ S & bandwidth M < N/2, we can decompose L as
L = PGS LC , where PGS is circulant positive definite of bandwidth M − 1.

I PGS encapsulates the connectivity information of GS

I We have L† = P−1
GS

L†C , where the entries of P−1
GS

exhibit exponential decay (in absolute value),

‘perturbing’ L†C
I The columns of S† are ‘perturbed’ piecewise linear polynomials
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General Circulant Graphs

I

Thm. 2
The cosparse analysis model on circulant graphs generates perturbed piecewise linear polynomials
N(ΨΛL) = z1N + P−1

GS
L†C ΨT

Λc Wc1, c1 ∈ R|Λ
c|−1, which are translated by 1N , while the sparse

synthesis model generates perturbed piecewise quadratic polynomials, P−1
GS

L†C ΨT
Λc c2, c2 ∈ R|Λ

c|.

⇒ The analysis constraint reduces the order of the functions which define its subspaces

0 10 20 30 40 50 60

Vertex

-8

-6

-4

-2

0

2

4

6

8

S
ig

n
a

l 
V

a
lu

e

L
†
41

L
†
21

L
†(e21 − e41)

(a) Functions on GS with S = {1}

0 10 20 30 40 50 60

Vertex

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

S
ig

n
a

l 
V

a
lu

e

L
†
41

L
†
21

L
†(e21 − e41)

(b) Functions on GS with S = {1, 2, 3}
Figure 1: Comparison of signal models on circulant graphs
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The Generalized Graph Laplacian

I Parametric Lα = dαIN − A, with dα =
∑M

j=1
2dj cos(αj), α ∈ C, and weights dj = Ai,(j+i)N ,

annihilates x = e±iαt, t = [0 ... N − 1] on circulant graphs of bandwidth M [MSK, ’17]

I On the simple cycle, the rows (columns) of LC,α have 2 exponential vanishing moments

I LC,α is singular for α = 2πk/N, k ∈ N, with N(LC,α) = span(eiαt, e−iαt), & non-singular o/w

I Lemma 1 For α 6= 2πk/N, k ∈ N, L−1
C,α has entries

L−1
C,α(m, n) =

1
(−e−iα + eiα)(−1 + eiαN )

eiα|n−m| +
1

(e−iα − eiα)(−1 + e−iαN )
e−iα|n−m|

,

0 ≤ m, n ≤ N − 1.

⇒ The rows (columns) of L−1
C,α are complex exponentials

I Lemma 2 For α = 2πk/N, k ∈ N and α 6= 0, kπ, L†C,α has entries

L†C,α(m, n) =
eiα

2N

(
2|n − m| (−1 + e2iα) + (N − 1)− e2iα(N + 1)

(−1 + e2iα)2

)
eiα|n−m|

+
e−iα

2N

(
2|n − m| (−1 + e−2iα) + (N − 1)− e−2iα(N + 1)

(−1 + e−2iα)2

)
e−iα|n−m|

, 0 ≤ m, n ≤ N−1.

⇒ The rows (columns) of L†C,α are linear complex exponential polynomials
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The Generalized Graph Laplacian

I On general circulant graphs GS , we have Lα = LC,αPα, where Pα is circulant of bandwidth M − 1
and depends on the graph connectivity

I Pα is positive definite up to certain α ∈ C and GS , then P−1
α invokes a localized perturbation

I

Thm. 3
For α 6= 2πk/N, k ∈ N, the cosparse analysis and sparse synthesis models of Lα are equivalent,
generating perturbed complex exponentials

P−1
α L−1

C,αΨT
Λc , Λc ⊂ V .

For α = 2πk/N, α 6= 0, kπ, k ∈ N , the sparse synthesis model generates perturbed linear
complex exponential polynomials

P−1
α L†C,αΨT

Λc , Λc ⊂ V .

The cosparse analysis model generates the constrained, translated subspaces

N(Lα) + P−1
α L†C,αΨT

Λc Wαc, Λc ⊂ V ,

for constraint Wα ∈ C|Λ
c|×|Λc|−2 such that ΨT

Λc (Wα)j ⊥ e±iαt.

If ΨT
Λc Wαc = (LC,α)j for some j ∈ V , this reduces to perturbed complex exponentials

N(Lα) + P−1
α

(
IN −

1
N

Eα
)

c̃, for suitable c̃ ∈ CN

where Eα is the projection onto N(Lα), and is comparable in order to the case α 6= 2πk/N, k ∈ N.

I For α = 0, this reduces to the graph Laplacian L
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Figure 2: Comparison of signal models on circulant graphs for L−1

α , α = 0.21.
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Figure 3: Comparison of signal models on circulant graphs for L†α , α = 4π/N.
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Uniqueness Guarantees

I Suppose x belongs to a graph Laplacian based UoS model on an undirected graph:
⇒ Identify the unique (co)sparse solution of y = Mx, for suitable M ∈ Rm×N , m < N, with linearly

independent rows

I Given mutually independent M and Ω, we require m ≥ κ̃Ω(l), with

κ̃Ω(l) := max{dim(WΛ1 + WΛ2 ) : |Λi | ≥ l, i = 1, 2}

to uniquely identify x with ΩΛx = 0Λ, l = N − ||Ωx||0 [Lu et al, ’07]

I Corollary: For mutually independent M ∈ Rm×N and Ω = L on G = (V , E), the problem

Mx = y with ||Lx||0 ≤ N − l = k

has at most one solution, provided k > 1, if

(i) m ≥ 2k − 1 , when the graph is connected,

(ii1) m ≥ 2k − 2 + c , when the graph is disconnected with c components.

(ii2) If x ∈
⋃
|Λ|=l

WΛ, for WΛ := N(LΛ), subject to |Λi | < Ni − 1, (ii1) becomes m ≥ 2k − c .

I For a stable sampling scheme, m necessarily depends on ln(L) and K , for L total subspaces with
maximum dimension K in a UoS [Blumensath et al, ’09]

⇒ Model-based Compressed Sensing (on Graphs)
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Conclusion and Future Work

I We have substantiated the discrepancy between the cosparse analysis and sparse synthesis models for the
graph Laplacian through subspace analysis

I We have characterized the functions defining the respective model subspaces on circulant graphs

I For the parametric graph Laplacian on circulant graphs, we have shown transitional properties between
model equivalence and non-equivalence

⇒ Develop refined UoS signal models on graphs with enhanced sampling schemes & recovery guarantees

For a comprehensive discussion, refer to arXiv

Analysis vs Synthesis with Structure - An Investigation of Union of Subspace Models on
Graphs

https://arxiv.org/abs/1811.04493
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Thank you.
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