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 Abstract - The Electric network frequency (ENF) 

signal is a unique signal for different parts of the world. It 

is captured by electric devices, and can be used in 

authentication and automatic synchronization of digital 

media recordings. In this paper we propose an algorithm 

to extract ENF from power and audio recordings, and use 

ENF criterion to identify the region-of-recording. We also 

propose a design of a circuit to record the electrical power 

grid. The ENF extraction was performed on one of the 

three highest peaking harmonics in the spectrum, using 

Discrete Fourier transform (DFT) in case of audio and 

Estimation of Signal Parameters via Rotational Invariance 

Techniques (ESPRIT) method in case of power 

recordings. The classification tool used was a set of binary 

support vector machines (SVM). Different combinations 

of features were used for each classification subgroup, 

resulting in 92% success rate on the Practice dataset, and 

86% on cross-validation with the Training dataset, both 

containing recordings from 9 different grids. The sensing 

circuit, constructed with Hall effect sensor and Arduino 

UNO, was used to obtain over 10 hours of recordings of 

the Serbian power grid. 

 Index Terms – Binary SVM classifier, Electric network 

frequency, ENF extraction, Hall effect sensor, Power grid 

measurements 

 

I.  INTRODUCTION 

 The Electric Network Frequency (ENF) is the 

utility frequency of a power grid and as such, ENF 

represents one of its main features. While directly 

measurable at e.g. wall sockets, power line signal also 

gets captured when recording audio or video signals in 

such an environment. The behaviour of the ENF signal 

is shown to be similar and, more importantly, stable 

across the whole network, possessing traits distinctive 

enough to serve as a “natural fingerprint” of a network 

[1]. ENF signals are used in various fields, including 
forensic authentication and detecting forgery of ENF-

containing multimedia signals, as well as inferring their 

time and location of creation [2-5]. Another potential 

usage of the ENF signals can be found in automatic 

synchronization of audio and video [6]. The ENF 

criterion has most recently been employed in a forensic 

technique for determining the time when a digital audio 

recording was made and determining the authenticity of 

evidential digital audio recordings [7]. This method is 

based on analysing the signal corresponding to the 

fundamental frequency of the voltage in the electrical 

network, which is present in the given recording, and 

comparing it with an appropriate, reliable reference 
database designed in a laboratory or obtained from the 

electric network company. Recent years have shown a 

significant increase in the number of attempts to use 

digital audio or video evidence in every sector of 

litigation and criminal justice. An ENF analysis of an 

audio or video signal is a strong tool to identify a 

forgery or falsification, and thus the introduction of 

ENF analysis represents a breakthrough in the quest for 

forensic techniques that will defeat the efforts of the 

audio/video forger operating in the digital domain [4].  

 The nominal value of utility frequency varies from 
one part of the world to another. The nominal value of 

60 Hz is present in Canada, USA, South America, and 

some parts of Africa, whereas it is 50 Hz in Europe, 

Australia, and the remaining parts of the world. It is 

also possible that in one country two nominal values are 

used, e.g., for the west side of Japan the nominal value 

is 60 Hz, and for the east side it is 50 Hz [5]. 

Regardless of its nominal value, the frequency of an 

electric network usually fluctuates around its supposed 

value due to the load variations in the grid. These 

fluctuations are significant since they define the ENF 

signal over time. The range can depend on the size of 
the grid, where a smaller capacity grid often has a 

higher range of fluctuations, whereas those with a 

larger capacity can be controlled with relative ease [5]. 

The previously conducted research has shown that the 

ENF signal across a connected power grid is similar at a 



given time period, but can have inter grid variations, 

caused by different local conditions in a city or across 

several cities [8]. So far, papers exploring this topic 

conclude that the ENF signals tends to be more similar 

at locations which are closer to each other, than those 

further apart. For that reason it would be beneficial to 
have a database with ENF data for a larger set of 

locations, to increase the accuracy of identification [6]. 

 Spectral analysis is a mean for investigating the 

spectral content of a signal by either nonparametric or 

parametric techniques. Non-parametric or classical 

approaches are based on the Fourier analysis of a signal 

(e.g., periodogram, correlogram, and modified versions 

of them). The second approach to spectral estimation is 

to hypothesize a model for the data, which provides a 

way to parameterize the spectrum, and thus reduces the 

spectral estimation problem to that of the parameter 

estimation for the assumed model [9]. Parametric 
approaches have shown to be more efficient in this 

field. In previous research, described in [8], the 

methods of choice were Multiple Signal Classification 

(MUSIC) and Estimation of Signal Parameters via 

Rotational Invariance Techniques (ESPRIT). The latter 

is based on subspace analysis of signals and noise 

model using the correlation coefficient, gives the most 

accurate results for the ENF signal estimation in terms 

of temporal and frequency resolution. 

 In this paper, an algorithm for ENF extraction and 

subsequent classification of the origin of the grid is 
proposed. The paper also describes the design of a 

sensing circuit for the power grid, as well as the 

procedure by which over ten hours of recordings was 

collected. 

II. EXTRACTION OF ENF SIGNALS 

A. Database 

 The database used in this paper consists of power 

and audio signals from 9 different power grids, named 

from A to I. Every grid is represented by between 8 and 

11 power signals and 2 audio recordings. All audio 

signals are of equal length of 30 minutes. On the other 

hand, power signals have variable length, ranging from 
15 minutes to 1 hour. Every grid in the database is 

represented with a different amount of data. Three out 

of nine grids, namely A, C, and I, have a nominal 

frequency of 60 Hz, while the others have a nominal 

frequency of 50 Hz. 

B. Algorithm 

 The core functionality of the ENF extractor is to 

filter audio and power signals in order to acquire a 

denoised signal carrying ENF properties of the grid. A 

decision tree is formed, and in doing so power and 

audio signals are treated differently depending on the 

nominal network frequency. 

 Firstly, a vector of frequencies is obtained by 

estimating the zero-crossing rate of the input signal. If 

the standard deviation of the zero-crossing rate of the 

input signal is below the threshold of 10Hz, the input 
signal is classified as a power signal, otherwise it is 

classified as an audio signal. The second decision 

concerns the nominal grid frequency. The three highest 

peaks in the spectrum around integer multiples of 50 

and 60 Hz are taken into consideration, in order to 

avoid spurious estimates. The one with the greatest 

amplitude is chosen as the frequency where filtering 

and the ENF extraction itself will take place. 

 In the case of power signals, the signal is filtered 

around the previously obtained frequency using an 

equiripple FIR filter. Following the filtering, the signal 

is then divided into 5-second long overlapping 
segments, and each one is multiplied by the Hamming 

window. The starting points of successive segments are 

1 second apart. The standard ESPRIT method is used 

for estimating the frequency. Therefore, one value per 

second is obtained.  

 If the input signal is classified as audio, it is 

divided into overlapping segments using Hamming 

windows of length 10 seconds, shifted by 1 second. The 

reason for adopting different window lengths for power 

and audio recordings lies in the desire to reduce 

processing time, since the ENF extracted from power 
recordings shows no significant difference when 10-

second segments are used. The spectrum is computed 

with Discrete Fourier transform, implemented in 

MATLAB as Fast Fourier transform (FFT). The highest 

peak within 20% of the previously acquired frequency 

in the spectrum of a segment is used for obtaining ENF, 

resulting in one estimate per second. In case of 

detection of great fluctuations, they are treated as false 

ENF estimates, and are consequently removed. If the 

difference between the two successive samples is more 

than 0.15 Hz, it is removed by assigning the value of 

the first sample to the subsequent; also, if this algorithm 
is performed more than 15 times, or the range of the 

signal is less than 0.02 Hz, the whole procedure is 

repeated with the different chosen frequency from the 

three maximum ones obtained. If none of these three 

frequency estimates leads to satisfactory results, the 

system returns the ENF signal approximation by using 

the first estimate, i.e. the one with the greatest 

amplitude. The resolution of ENF signal obtained in 

this manner is 0.5 mHz. When the ENF is extracted 

from a multiple of 50 or 60 Hz, either power or audio, it 

is divided by the order of the harmonic. Fig. 1-4 show 
the ENF signals extracted from both audio and power 

recordings from grids with different nominal frequency. 

 



  
Fig. 1. ENF signal extracted from an audio recording from grid G. Fig. 2. ENF signal extracted from an audio recording from grid I. 

  
Fig. 3. ENF signal extracted from a power recording from grid B. Fig. 4. ENF signal extracted from a power recording from grid C. 

 

III. ENF CLASSIFICATION 

 The classification of signals according to their 

originating grids follows the ENF extraction. Based on 

the nominal value of the input signal and the decision 

on its type (audio or power), the signal will be 

classified using one of the 4 classifiers, according to 

extracted features. The first classifier is for power 

signals with nominal network frequency of 50 Hz, 

which is trained on power signals from 6 different grids 

with nominal network frequency of 50 Hz. The second 
classifier is for power signals with nominal frequency 

of 60 Hz, which is trained on power signals from 3 

different grids with nominal value of 60Hz. The third 

classifier is for audio signals from grids with nominal 

frequency of 50 Hz, which is trained on both audio and 

power signals from 6 different grids with nominal value 

of 50 Hz. The fourth classifier is for audio signals from 

grids with nominal frequency of 60 Hz, which is trained 

on both audio and power signals from the remaining 3 

grids with nominal frequency of 60 Hz. Each classifier, 

as a result, returns the label of the recognized grid from 
the training set, or classifies the signal as unknown, 

which means that it does not belong to any of the grids 

from the training set. 

A. Feature set 

 After a detailed analysis of ENF signals, it can be 

noticed that certain signal features are more 

discriminative than others. Consequently, the features 

used for location identification were the following: 

mean and range of ENF signals, the coefficients 

obtained by wavelet decomposition and the Yule-

Walker method, values connected with the extrema 

present in the signal, as well as values connected with 

rising edges present in the signal.  
 By finding the mean of the ENF signal it can be 

easily distinguished if its nominal value is 50 Hz or 

60 Hz. Furthermore, even the signals with the same 

nominal frequency could be separated based on their 

respective mean value. In order to calculate the 

dynamic range of the signal the minimum value of the 

signal was subtracted from its maximum value. The 

variance was not considered since it was found to be 

highly correlated with the range of the signal. 

 Since ENF is time-variable, wavelet decomposition 

was considered to be a suitable transformation to 
observe both frequency and time changes [10-11]. The 

original ENF signal was decomposed into N levels, 

with symlet wavelet family as the base. The optimal 

value of N was computed: 

 ),(log2 gthsignal_lenN   (1) 



which resulted in a 12-level decomposition for the 

longest ENF signal, hence used for all ENF signals 

[11]. The value of the logarithm of the standard 

deviation of the approximation after all 12 levels of 

each level of detail represented additional 13 possible 

features. The Yule–Walker method is an approach that 

uses the Yule-Walker (or Normal) equation for 

estimating the autoregressive (AR) parameters. The 
values used as features were 3rd and 4th coefficients, as 

well as the estimation of variance of the white noise, 

both obtained from the Yule-Walker AR model of the 

4th order [8].  

 Another two features were obtained observing the 

extrema in the ENF signal. The first one represents the 

percentage of the points in which the first derivative 

changes its sign, i.e. the number of local minima and 

maxima divided by the length of the ENF signal. The 

second feature is the standard deviation of a vector 

containing the maximum difference between a local 
extremum (maximum or minimum) and its two nearest 

neighbours (predecessor and successor), or zero if the 

point was neither a local minimum nor a local 

maximum. These features are named extremes_feature1 

and extremes_feature2. Finally, the last pair of features 

are those related to a change of monotonicity in the 

signal. The sum of the rising edge points is stored into 

one vector, while the other one carries the information 

about the index of the last rising edge point. The mean 

values of both vectors are calculated and used as 

features rise_feature1 and rise_feature2. The scatter 

plot of features for power signals from 60Hz grids is 
shown in Figure 5. Axes x, y and z show rise_feature1, 

rise_feature2 and extremes_feature1, respectively. 

B. SVM classification 

 A supervised learning model was chosen for 

classification, specifically a binary support vector 

machine (SVM). In order to avoid overfitting for 

classes with a bigger amount of data in training process, 

not all the data from the given database was used. For 

each class exactly the same number of samples was 

taken into consideration for training, which means that 

several signals were shortened for not more than 10 

minutes. Four different classifiers were trained 

separately: one for each nominal frequency and for each 
type of signal (power or audio). The classifiers for 

audio signals were trained on both audio and power 

signals, while the classifiers for power signals were 

trained on power signals only. The data preparation 

process was the same for all signals. One by one, the 

signals were fed to ENF extractor block, and the 

extracted ENF signals were processed by the feature 

extractor block, which stored obtained features into a 

table. Each column of this table presents one feature, 

and each row corresponds to one training data sample. 

Features were extracted from windows of 600 samples 
(10 minutes), while the overlap of neighbouring 

windows was 300 samples. Each window was 

considered as one independent training data sample. 

The overlap was used in order to avoid loss of 

information, as well as to increase the number of 

training samples. The last window of a signal was taken 

into consideration only if it lasted more than 480 

samples (8 minutes). Different classification problems 

required specific features, and the ones with the best 

results were chosen heuristically (Table 1). The 

function fitcsvm provided in MATLAB's Statistics and 

Machine Learning Toolbox was used to implement the 
SVM. As the kernel function, radial basis function was 

used, and parameter KernelScale was set to auto, 

meaning that the software uses a heuristic procedure to 

select the optimal scale value. The parameter 

Standardize was also set, in order to normalize the 

features.  

  

 
 

Fig. 5. Scatter plot for features of 60 Hz power recordings 



TABLE I 

LIST OF THE FEATURES USED BY EACH OF THE CLASSIFIERS 

features 

audio power 

50 Hz 60 Hz 50 Hz 60 Hz 

mean value 

range 

log(std(wav1)) 

log(std(wav3)) 

log(std(wav5)) 

log(std(wav7)) 

log(std(wav8)) 

log(std(wav9)) 

3rd YW coefficient 

4th YW coefficient 

mean(rise_feature1) 

max(rise_feature2) 

mean(rise_feature2) 

extremes_feature1 

extremes_feature2 

x 

x 

x 
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* wavM is the wavelet detail of the M-th level;  YW stands for 
Yule-Walker; rise_feature1, rise_feature2, extremes_feature1 
and extremes_feature2 are all explained in detail in section A 

 

 For a system with M classes, a total of M(M−1)/2 

binary classifiers were trained for every possible pair of 

the grids, as in [12], which means that M equalled 3 if 

the nominal frequency value was 60 Hz, and 6 in case 

of 50 Hz. Depending on the score for the grids 

compared within each binary classifier, the predicted 

label was either Grid1, Grid2, or none-of-the-above 

(abbreviated: N). The final decision was based on the 

number of votes from each binary classifier, where the 

class with the maximum number of gathered votes is 

the winner. Since there was a possibility that outcome 
of all of the classifiers would be none-of-the-above, the 

priority in voting was given to the decision for a grid 

that belongs to the given dataset. This was achieved by 

setting a threshold of minimum of 2 hits out of 5 

classifiers (case of 50 Hz grids classification), or 1 hit 

out of 3 classifiers (case of 60 Hz grids classification). 

 When the classifiers are prepared, the classification 

of unknown signals can be performed. The signal for 

which the grid of origin has to be determined will first 

be fed to the ENF extractor. Based on the output values, 

which will determine whether the signal is audio or 
power, and which is its nominal frequency, the signal 

will be submitted to the corresponding classifier. The 

feature extractor block will choose only the features 

necessary for a particular trained classifier, and perform 

classification. As the result, classifier will return a label 

of one of the 9 grids from the database, or label N as an 

indication that the analysed signal does not belong to 

any of them. 

 The evaluation of the system was done using cross 

validation. The power signals, both for 50 and 60 Hz 

grids, the signals were divided into 5 groups with an 
almost equal amount of data from each class. In order 

to artificially increase the amount of audio data, each 

audio signal was divided into 3 parts and each part was 

considered as an independent signal. Consequently, the 

training/test set consisted of 54 different audio signals 

from 9 grids instead of 18. For cross-validation, both 

for 50 and 60 Hz grids, audio signals were divided into 

3 groups. The training set was made with 2 out of 3 

groups of audio signals and power signals were added 
into the current training set (for each of the 3 

iterations), and the remaining group was used as the test 

set. The training sets were chosen in described manner, 

since the results obtained with them gave higher 

accuracy than the other combination (as shown in 

Table 2).  

 The obtained result on the Practice dataset 

(provided by SP CUP 2016) is the following label 

sequence: 

 

AHCFG, BGIND, ADBDC, INNAE, HBBAD, 

CGHGB, DDCHG, EAIHI, EHECF, GNGEI 
 

The accuracy of that classification is 92%. The obtained 

result on the Testing dataset is the following label 

sequence: 

 

NDDCD, GHGAG, ANGBG, BFCEH, GHHGG, 

BFDAI, DNFHI, IECBD, ENIBG, FFNAG, IINID, 

HAEFC, CCDDG, CECGI, EICEN, BEBHA, 

DIHCG, AIBIH, CNDBA, HBFBB 

 

TABLE II 

RESULTS IN (%) OF CROSS VALIDATION FOR EACH OF THE CLASSIFIERS 

        tested on 

 

trained on 

50 Hz 

power 

50 Hz 

audio 

60 Hz 

power 

60 Hz 

audio 

audio / 69.44 / 77.78 

power 86.38 / 95.56 / 

power and 

audio 
82.46 75.00 94.38 88.89 

IV. CIRCUIT DESIGN 

 The primary focus in designing the circuit for 

measurements of local electrical power grid was to 

deliver a plain and robust solution. Unquestionably, the 

core functionality can be achieved through several 

different options. Since the voltage level in wall outlets 

first must be rescaled to the requested range for data 

acquisition module, the first step can be carried out by 

e.g. current transformers, resistive shunts, Hall effect 

sensors, or Rogowski coils. Apart from data acquisition 

modules with driver software and USB connection (i.e. 
“black box” solution), the next step that includes 

analogue to digital conversion, sampling and file, can 

be done with various microprocessor units [13]. The 

solution our team opted for is a combination of proven, 



but for us previously unfamiliar sensing equipment and 

standard, well-known tools in digital signal processing. 

The chosen specific realization of afore-described setup 

consisted of Hall effect sensor, Arduino board and 

MathWorks MATLAB. 

 Hall effect sensor is a current transducer based on 
Hall effect, providing low noise current on the output 

proportional to the AC/DC current on the input [14]. It 

is commonly used owing to several distinctive 

properties: isolation from voltage spikes, modularity 

and tolerable dimensions. Non-linearity caused by a 

Hall effect sensor is significantly smaller than due to 

the conventional current transformer, while the galvanic 

isolation between the grid and the sensor equipment is 

retained. The sensor used in our circuit was LV 25-P 

(manufactured by LEM), with a conversion ratio of 

2500:1000, accompanied by 25 kΩ resistors in series 

(Fig. 6). The ground was common for both the Hall 
effect sensor and Arduino board. 

 Arduino UNO, developed by Arduino, of the same 

name, is a widely available open-source single-board 

microcontroller (SBM). The output from the Hall effect 

sensor was fed into Arduino’s analogue input pin. 

Analog input was in the range of 0 to 5 V, and the AD 

conversion used 10 bits (values from 0 to 1023). The 

sampling rate, set at 2 kHz, was achieved using the 

Timer library, available at Arduino’s website. The 

values were sent as ASCII characters for further steps 

to the UART serial port with baud rate of 112500 b/s.  
 As for the final piece of the measurement setup, 

MATLAB from MathWorks was employed to receive 

the data in digital format from the Arduino board 

through the aforementioned UART serial port during 

the predicted time period of 1 hour. Subsequently, the 

recordings were converted into the desired WAVE 

format and saved. A minor MATLAB function was 

written in order to automate the process. The circuit 

realization is shown in Fig. 7. 

 

 
Fig. 7. The equipment for power grid recordings. 

V.  DATA ANALYSIS 

 In order to observe fluctuations in the utility 

frequency of the Serbian network, the power grid was 

recorded at various times of the day and week. By using 

the algorithm proposed in this paper, the ENF signal 

was extracted (Fig. 8, enlarged Fig. 9) from the power 

recordings made with the aforementioned sensing 

circuit. The ENF signal in Serbian network has a 

nominal frequency of 50 Hz. 

 For the purpose of data analysis, some basic 

characteristics of the signal were computed: mean 

value, standard deviation and range of the signal 
(Table 3). Most of the time, the mean value of the 

signal is above 50 Hz, as can also be observed in Fig. 9. 

The range of the signal does not exceed the value of 

0.13 Hz. It appears to have smaller values in the 

morning and in the afternoon, a slight increase in the 

late afternoon which coincides with the end of the 

working day, and afterwards, during the night, it 

decreases again.  

 By observing and comparing the plots of the ENF 

signal extracted from these recordings, one can detect 

certain similarities in behaviour with grids D and F 

(Table 4). Moreover, the observed characteristics of the 
signals appear to be similar as well. 

 

 
Fig. 6. Circuit for grid voltage measurement using Hall effect sensor LV 25-P. 

 



  
Fig. 8. ENF signal extracted from a power recording made in the 

morning. 

Fig. 9. Zoomed ENF signal extracted from a power recording made 

in the morning. 

 
TABLE III 

LIST OF THE RECORDINGS MADE WITH BASIC CHARACTERISTICS SHOWN. 

date(Y/M/D) time working day mean (Hz) std. deviation (Hz) range (Hz) 

2015/12/30 09:16-10:16 yes 50.0105 0.0118 0.0625 

2016/01/05 16:30-17:30 no 49.9967 0.0265 0.1147 

2016/01/05 19:12-20:12 no 50.0192 0.0265 0.1314 

2016/01/05 22:40-23:40 no 50.0138 0.0260 0.0928 

2016/01/06 19:26-20:26 no 50.0208 0.0229 0.1257 

2016/01/13 10:05-11:05 yes 50.0298 0.0143 0.0870 

2016/01/13 12:05-13:05 yes 50.0291 0.0143 0.0786 

2016/01/13 14:05-15:05 yes 50.0176 0.0138 0.0653 

2016/01/14 08:50-09:50 yes 50.0023 0.0121 0.0655 

2016/01/14 16:40-17:40 yes 50.0034 0.0151 0.0831 

 
TABLE IV 

COMPARISON BETWEEN SERBIAN NETWORK AND SIMILAR NETWORKS FROM THE TRAINING SET 

 mean (Hz) std. deviation (Hz) range (Hz)  

Grid F 50.0020 0.0152 0.0716 

Grid D 49.9982 0.0159 0.0765 

Serbian grid 50.0143 0.0183 0.0907 

 

 

When compared to other grids with respect to ENF 

characteristics, Serbian network shows most 

resemblance to grid D (Fig.10). 

V.  CONCLUSION 

 In this paper, a system for extraction and 

classification of ENF signals from 9 different grids of 

origin was developed. The ENF from power grid 

recordings was extracted from the harmonic with the 

highest peak. The standard ESPRIT method was used 

for power signals, while in case of audio signals the 

spectrum was obtained with Discrete Fourier transform. 

The grid location classifier was based on SVM. For 
each of the four groups of ENF signals (50/60 Hz, 

power/audio), a binary classifier with a specific set of 

 
Fig. 10. Signal from Team's grid and one from grid D. 

 



features was trained. The final decision was for the grid 

with most votes from each of the classifiers. The voting 

system favoured grids from the database over none-of-

the-above to balance the expected large number of 

classifiers with the latter outcome. During the research, 

grid F was concluded to be the one with least distinctive 
traits, thus the one hardest to correctly identify. The 

accuracy scored on Practice dataset was 92%. Since the 

contribution of the recordings to the Practice dataset is 

not equal, a weighted average was used to determine 

the comparable result of cross-validation. When 

calculated as described, success rate of classification is 

86%. The suggestions for further work are the 

following: improving the resolution of ENF signal 

extracted from audio recordings, discovering a 

discriminative feature for grid F and finding an optimal 

mother wavelet for the specific use in ENF criterion. 

Beside the system for classification, the sensing circuit 
is realized with Hall effect sensor and Arduino UNO, 

and used to obtain over 10 hours of recordings of the 

Serbian power grid. By observing plots of the extracted 

ENF signal from those recordings and comparing 

values of its features, most similarities in behaviour are 

detected with grid G, followed by D and F. 
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