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Introduction 
 NILM challenges 
 Training 
 Modeling large number of devices 

 Power Consumption Clustered NILM (PCC-NILM) 
 Group devices by power consumption 
 Report on energy consumed by each class of devices 

 Instead of full disaggregation problem 
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NILM Background 
 George Hart, MIT 
 First posed NILM problem 

in early-mid 1980’s 
 PQ-plane for clustering devices 
 Complete system for tracking 

energy 
 Finite State Machines (FSM) for 

tracking device operation 
 Could only handle on/off 

devices 
 Proposed methods for 

learning multi-state FSMs 
 Event-based framework 

G. Hart, “Nonintrusive appliance load monitoring," Proceedings of the IEEE, vol. 
80, no. 12, pp. 1870–1891, 1992. 
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NILM Background 
 Traditional event-based NILM framework 

 
 
 
 

 Research after Hart, mid-1990’s until 2011 
 Focus on event detection, feature extraction, and classification 
 Almost no work on energy disaggregation 

 Zeifman NILM review paper in 2011[1] 

– Apart from Hart, only one author mentioned energy metrics 
 Berges Ph.D. Thesis[2] proposes Energy Identification Ratio (EIR) metric 
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[1] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring: Review and outlook,” IEEE Transactions on Consumer 
Electronics, vol. 57, no. 1, pp. 76–84, Feb. 2011. 
[2] M. Berges, “A framework for enabling energy-aware facilities through minimally-intrusive approaches," Ph.D. Thesis,  
Carnegie Mellon University, 2010. 
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Event Detection  
Parameter Sweep 
 Log-Likelihood Ratio Event Detector 
 3 degrees of freedom 
 1,456 parameter combinations 
 Fast algorithm 

 BLUED Dataset 
 Power sampled at 1 Hz 

 867 phase A events 
 1,588 phase B events 

 Detector Sensitivity 
 Ordering based on total 

number of events detected 
 Best Detector 
 Based on        vs.       [1] 

Sensitivity Events TP FP Misses 
Least 681 646 35 221 
Most 3972 736 3236 131 

Most TP 1762 856 906 11 
Least FP 750 743 7 124 

Best 829 814 15 53 
TP
E

FP
E

How to track energy with so many misses and false positives? 
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[1] K. Anderson et al., “Event detection for nonintrusive load monitoring,” in Proceedings of the 38th Annual 
Conference on IEEE Industrial Electronics Society (IECON).Montreal, Canada: IEEE, Nov. 2012. 
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Event-Based NILM 
 Difficulties with traditional event-based approach 
 Training 
 Lack of accepted performance metrics 

 Event detection, classification, energy consumption, etc. 
 Lack of energy disaggregation 

 Work on event detection and classification but little energy tracking 
 Cascading effect of errors from event detection and classification 

stages 
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Step back and reconsider the NILM problem… 
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Reconsidering the 
Disaggregation Problem 
 Additive energy disaggregation model 

 
 
 

 Total energy consumed is sum of energy consumed by K devices 

 What if we allow K to represent something else? 
 Number of rooms 
 Activities 
 People 

 

E =
KX

k=1

Ek
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Need a data-driven solution… 
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Power Consumption Clustering 
 Histogram of ‘On’ events from phase A of the BLUED dataset 

 
 
 
 
 
 Cluster centroids ¹k 

 Track energy consumed by each class 
 Devices may be inferred from power ranges 
 Can track energy consumed by each class 

 
 
 
 

 

k ¹k Power Consumption 
Range 

0 - Background 
1 69.2 W 0–105 W 
2 140.8 W 105–720 W 
3 1300.8 W 720+ W E = E0 +

KX

k=1

Ek
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PCC-NILM Solution Example 
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Approximate Power Trace Decomposition 
Algorithm (APTDA) 
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EP =

Z
P dt =

Z
P dt = EP

 Energy-preserving piecewise constant approximation,   
 Computed from original power trace, P, and set of edges, e 

 

 

 

 

 

 

 

 

      is average of each segment of P 

 Segments are disjoint 
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Approximate Power Trace Decomposition 
Algorithm (APTDA) 

 Crowdsourcing event detectors 
 Compare results across wide range of detectors 
 Choose most stable output 
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Crowdsourcing Power Ranges 
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Crowdsourcing Power Ranges 

 1,456 different power ranges 
 Choose most frequent mode for each range for  
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Crowdsourcing Energy Estimates 

Component Decomposition 
and Balancing  
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Crowdsourcing Energy Estimates 

 1,456 different energy estimates 
 Crowdsourcing algorithm to find most stable region across 

all power consumption classes 
 Energy estimate robust to event detection errors 
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Background and Active 
Components 

P ¼ P = P 0 +
KX

k=1

P k

Power Consumption Clustered-NILM 
 PCC-NILM 
 Relaxation of full disaggregation problem 

 Disaggregate according to power consumption ranges 
 Power ranges inferred from data 

 Completely Unsupervised 
 Approximate P  and decompose into relevant components 

 
 
 

 Energy obtained by integrating components 
Ek =

Z
P k dt
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Future Work 
 Incorporate reactive power (Q)   
 2-D APTDA 

 Methods for selecting K 
 Number of classes used for clustering 

 Single device classes 
 Higher consumption devices have good separation 

 Sampling frequency analysis 
 Used 1 Hz power data, can we do less? 

 Human computer interaction 
 Study how to report information to use 

 Changing power range distributions 
 Power ranges vary with consumption changes 
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Questions? 
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