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Introduction 
 NILM challenges 
 Training 
 Modeling large number of devices 

 Power Consumption Clustered NILM (PCC-NILM) 
 Group devices by power consumption 
 Report on energy consumed by each class of devices 

 Instead of full disaggregation problem 
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NILM Background 
 George Hart, MIT 
 First posed NILM problem 

in early-mid 1980’s 
 PQ-plane for clustering devices 
 Complete system for tracking 

energy 
 Finite State Machines (FSM) for 

tracking device operation 
 Could only handle on/off 

devices 
 Proposed methods for 

learning multi-state FSMs 
 Event-based framework 

G. Hart, “Nonintrusive appliance load monitoring," Proceedings of the IEEE, vol. 
80, no. 12, pp. 1870–1891, 1992. 
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NILM Background 
 Traditional event-based NILM framework 

 
 
 
 

 Research after Hart, mid-1990’s until 2011 
 Focus on event detection, feature extraction, and classification 
 Almost no work on energy disaggregation 

 Zeifman NILM review paper in 2011[1] 

– Apart from Hart, only one author mentioned energy metrics 
 Berges Ph.D. Thesis[2] proposes Energy Identification Ratio (EIR) metric 
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[1] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring: Review and outlook,” IEEE Transactions on Consumer 
Electronics, vol. 57, no. 1, pp. 76–84, Feb. 2011. 
[2] M. Berges, “A framework for enabling energy-aware facilities through minimally-intrusive approaches," Ph.D. Thesis,  
Carnegie Mellon University, 2010. 
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Event Detection  
Parameter Sweep 
 Log-Likelihood Ratio Event Detector 
 3 degrees of freedom 
 1,456 parameter combinations 
 Fast algorithm 

 BLUED Dataset 
 Power sampled at 1 Hz 

 867 phase A events 
 1,588 phase B events 

 Detector Sensitivity 
 Ordering based on total 

number of events detected 
 Best Detector 
 Based on        vs.       [1] 

Sensitivity Events TP FP Misses 
Least 681 646 35 221 
Most 3972 736 3236 131 

Most TP 1762 856 906 11 
Least FP 750 743 7 124 

Best 829 814 15 53 
TP
E

FP
E

How to track energy with so many misses and false positives? 
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[1] K. Anderson et al., “Event detection for nonintrusive load monitoring,” in Proceedings of the 38th Annual 
Conference on IEEE Industrial Electronics Society (IECON).Montreal, Canada: IEEE, Nov. 2012. 
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Event-Based NILM 
 Difficulties with traditional event-based approach 
 Training 
 Lack of accepted performance metrics 

 Event detection, classification, energy consumption, etc. 
 Lack of energy disaggregation 

 Work on event detection and classification but little energy tracking 
 Cascading effect of errors from event detection and classification 

stages 
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Step back and reconsider the NILM problem… 
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Reconsidering the 
Disaggregation Problem 
 Additive energy disaggregation model 

 
 
 

 Total energy consumed is sum of energy consumed by K devices 

 What if we allow K to represent something else? 
 Number of rooms 
 Activities 
 People 

 

E =
KX

k=1

Ek
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Need a data-driven solution… 
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Power Consumption Clustering 
 Histogram of ‘On’ events from phase A of the BLUED dataset 

 
 
 
 
 
 Cluster centroids ¹k 

 Track energy consumed by each class 
 Devices may be inferred from power ranges 
 Can track energy consumed by each class 

 
 
 
 

 

k ¹k Power Consumption 
Range 

0 - Background 
1 69.2 W 0–105 W 
2 140.8 W 105–720 W 
3 1300.8 W 720+ W E = E0 +

KX

k=1

Ek
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PCC-NILM Solution Example 
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Approximate Power Trace Decomposition 
Algorithm (APTDA) 
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EP =

Z
P dt =

Z
P dt = EP

 Energy-preserving piecewise constant approximation,   
 Computed from original power trace, P, and set of edges, e 

 

 

 

 

 

 

 

 

      is average of each segment of P 

 Segments are disjoint 
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Approximate Power Trace Decomposition 
Algorithm (APTDA) 

 Crowdsourcing event detectors 
 Compare results across wide range of detectors 
 Choose most stable output 

Power Trace 
Approximation 

 
Clustering 

Component Decomposition 
and Balancing 

Event 
Detection 

Active Segment 
Labeling 

Background 
Power Estimation 

 
 



Carnegie Mellon 

13 

Crowdsourcing Power Ranges 
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Crowdsourcing Power Ranges 

 1,456 different power ranges 
 Choose most frequent mode for each range for  
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Crowdsourcing Energy Estimates 

Component Decomposition 
and Balancing  
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Crowdsourcing Energy Estimates 

 1,456 different energy estimates 
 Crowdsourcing algorithm to find most stable region across 

all power consumption classes 
 Energy estimate robust to event detection errors 
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Background and Active 
Components 

P ¼ P = P 0 +
KX

k=1

P k

Power Consumption Clustered-NILM 
 PCC-NILM 
 Relaxation of full disaggregation problem 

 Disaggregate according to power consumption ranges 
 Power ranges inferred from data 

 Completely Unsupervised 
 Approximate P  and decompose into relevant components 

 
 
 

 Energy obtained by integrating components 
Ek =

Z
P k dt
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Future Work 
 Incorporate reactive power (Q)   
 2-D APTDA 

 Methods for selecting K 
 Number of classes used for clustering 

 Single device classes 
 Higher consumption devices have good separation 

 Sampling frequency analysis 
 Used 1 Hz power data, can we do less? 

 Human computer interaction 
 Study how to report information to use 

 Changing power range distributions 
 Power ranges vary with consumption changes 
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Questions? 
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