Non-Intrusive Load Monitoring: A Power Consumption Based Relaxation

Kyle D. Anderson, José M.F. Moura, and Mario Bergès

> GlobalSIP 2015 Orlando, FL

Introduction

NILM challenges

- Training
- Modeling large number of devices

Power Consumption Clustered NILM (PCC-NILM)

- Group devices by power consumption
- Report on energy consumed by each class of devices
 - Instead of full disaggregation problem

NILM Background

- George Hart, MIT
 - First posed NILM problem in early-mid 1980's
 - PQ-plane for clustering devices
 - Complete system for tracking energy
 - Finite State Machines (FSM) for tracking device operation
 - Could only handle on/off devices
 - Proposed methods for learning multi-state FSMs
 - Event-based framework

Electrical & Computer

(VAR)

REACTIVE POWER

Fig. 4. Finite-state appliance models: (a) generic 1200 W two-state appliance, e.g., toaster; (b) refrigerator with defrost state; (c) "three-Way" lamp; (d) clothes dryer.

G. Hart, "Nonintrusive appliance load monitoring," *Proceedings of the IEEE*, vol. 80, no. 12, pp. 1870–1891, 1992.

NILM Background

Traditional event-based NILM framework

Research after Hart, mid-1990's until 2011

- Focus on event detection, feature extraction, and classification
- Almost no work on energy disaggregation
 - Zeifman NILM review paper in 2011^[1]
 - Apart from Hart, only one author mentioned energy metrics
 - Berges Ph.D. Thesis^[2] proposes Energy Identification Ratio (EIR) metric

[1] M. Zeifman and K. Roth, "Nonintrusive appliance load monitoring: Review and outlook," *IEEE Transactions on Consumer Electronics*, vol. 57, no. 1, pp. 76–84, Feb. 2011.

[2] M. Berges, "A framework for enabling energy-aware facilities through minimally-intrusive approaches," Ph.D. Thesis, Carnegie Mellon University, 2010.

Carnegie Mellon

Event Detection Parameter Sweep

Log-Likelihood Ratio Event Detector

- 3 degrees of necolar 1,456 parameter combinations 1,2000-

BLUED Dataset

- Power sampled at 1 Hz
 - 867 phase A events
 - 1,588 phase B events

Detector Sensitivity

- Ordering based on total number of events detected
- **Best Detector**

Electrical & Computer

• Based on $\frac{IP}{E}$ vs. $\frac{FP}{F}$ [1]

Sensitivity	Events	TP	FP	Misses
Least	681	646	35	221
Most	3972	736	3236	131
Most TP	1762	856	906	11
Least FP	750	743	7	124
Best	829	814	15	53

How to track energy with so many misses and false positives?

[1] K. Anderson et al., "Event detection for nonintrusive load monitoring," in Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society (IECON).Montreal, Canada: IEEE, Nov. 2012.

Event-Based NILM

Difficulties with traditional event-based approach

- Training
- Lack of accepted performance metrics
 - Event detection, classification, energy consumption, etc.
- Lack of energy disaggregation
 - Work on event detection and classification but little energy tracking
 - Cascading effect of errors from event detection and classification stages

Step back and reconsider the NILM problem...

Power

Event

Feature

Reconsidering the Disaggregation Problem

Computation Detection Breaker Energy Classification Disaggregation Extraction

Circuit

Additive energy disaggregation model

$$E = \sum_{k=1}^{K} E_k$$

- Total energy consumed is sum of energy consumed by K devices
- What if we allow K to represent something else?
 - Number of rooms
 - **Activities**
 - People

Need a data-driven solution...

Power Consumption Clustering

Histogram of 'On' events from phase A of the BLUED dataset

PCC-NILM Solution Example

Electrical & Computer

Approximate Power Trace Decomposition Algorithm (APTDA)

Power Trace Approximation

• Energy-preserving piecewise constant approximation, \overline{P}

Computed from original power trace, P, and set of edges, e

Electrical & Computer

Approximate Power Trace Decomposition Algorithm (APTDA)

Crowdsourcing event detectors

- Compare results across wide range of detectors
- Choose most stable output

Crowdsourcing Power Ranges

Crowdsourcing Power Ranges

1,456 different power ranges

Electrical & Computer

• Choose most frequent mode for each range for $\widehat{\mu}_k$

Crowdsourcing Energy Estimates

Crowdsourcing Energy Estimates

- 1,456 different energy estimates
- Crowdsourcing algorithm to find most stable region across all power consumption classes

Electrical & Computer Electrical & Computer ENCINE EPING

Power Consumption Clustered-NILM

PCC-NILM

- Relaxation of full disaggregation problem
- Disaggregate according to power consumption ranges
 - Power ranges inferred from data
- Completely Unsupervised
- Approximate P and decompose into relevant components

$$P \approx \overline{P} = \overline{P}_0 + \sum_{k=1} \overline{P}_k$$

$$f = P_0 + \sum_{k=1} \overline{P}_k$$
Background and Active Components

Energy obtained by integrating components

$$\overline{E}_k = \int \overline{P}_k \, \mathrm{d}t$$

Future Work

- Incorporate reactive power (Q)
 - 2-D APTDA

Electrical & Computer

- Methods for selecting K
 - Number of classes used for clustering
- Single device classes
 - Higher consumption devices have good separation
- Sampling frequency analysis
 - Used 1 Hz power data, can we do less?
- Human computer interaction
 - Study how to report information to use
- Changing power range distributions
 - Power ranges vary with consumption changes

Questions?

