Iterative Beam Alignment Algorithms for TDD MIMO Systems IEEE ICASSP 2017, New Orleans, LA

Dennis Ogbe, David J. Love, Vasanthan Raghavan March 7, 2017

DGORDG

Part 1: Introduction

- Problem Statement \& Background
- System Model
- Prior work

Part 2: Proposed Beam Alignment Algorithms

- Sequential Least Squares (SLS) Power Method
- Summed Power Method
- Least-squares initialized Summed Power Method (LISP method)
Part 3: Simulation Results
- I.I.D Rayleigh fading model
- Sparse mmWave model

Part 4: Conclusion

- Further research
- Acknowledgments

Part 1: Introduction

- 5G technologies rely on beamforming gains to realize data rate requirements
- Millimeter-wave (mmWave): Compensation for increased path and penetration loss in $25-100 \mathrm{GHz}$ band
- Massive MIMO: Multi-user beamforming in sub-6 GHz bands

- However: Optimal beamforming weights depend on the channel matrix

Introduction

- With sufficiently small arrays,
a) Use sounding sequences and feedback for each antenna
b) Directly compute optimal beamformers (i.e. singular vectors of channel matrix)
- Problem: Sounding approach is impractical with many antennas
- Solution: Beam-based sounding
- Users always transmit on beams
- Acquire beamformers using a TDD beam alignment phase

- Need for practical approaches to TDD-based beam alignment (i.e. with additive noise, mmWave channel models)
- Beamsweeping (codebook-based)
- Greedy \rightarrow ping-pong framework

System Model

Ping-pong beam alignment framework divides each channel use k into two time slots

Slot 1 (ping)

Node 1 sounds beam $\mathbf{f}[k]$ as

$$
\mathbf{y}_{o}[k]=\sqrt{\rho_{o}} \mathbf{H f}[k]+\mathbf{n}_{o}[k]
$$

Slot 2 (pong)

Node 2 sounds beam $\mathbf{z}[k]$ as

$$
\mathbf{y}_{e}[k]=\sqrt{\rho_{e}} \mathbf{H}^{\top} \overline{\mathbf{z}}[k]+\mathbf{n}_{e}[k]
$$

Notation: $\mathbf{H}-M_{r} \times M_{t}$ channel matrix, ρ_{e}, ρ_{o} - beam alignment SNR, $\mathbf{n}_{e}[k], \mathbf{n}_{o}[k]$ - complex additive white Gaussian noise

Power Method

- Propose new beam alignment algorithms based on power method


```
Power Method (one-way)
    Given: Diagonalizable }\mathbf{A}\in\mp@subsup{\mathbb{C}}{}{n\timesn}\mathrm{ and
    unit 2-norm v
    for }k=1,2,\ldots\mathrm{ do
        \mp@subsup{\mathbf{v}}{}{(k)}=\mathbf{A}\mp@subsup{\mathbf{v}}{}{(k-1)}/|\mathbf{A}\mp@subsup{\mathbf{v}}{}{(k-1)}\mp@subsup{|}{2}{}
    end for
Power Method (two-way)
    Given: H}\in\mp@subsup{\mathbb{C}}{}{n\timesn}\mathrm{ and unit 2-norm }\mp@subsup{\mathbf{x}}{}{(0)
    for }k=1,2,\ldots\mathrm{ do
    \mp@subsup{y}{}{(k)}=\mathbf{Hx}
    \mp@subsup{\mathbf{w}}{}{(k)}=\mp@subsup{\mathbf{y}}{}{(k)}/|\mp@subsup{\mathbf{y}}{}{(k)}\mp@subsup{|}{2}{}
    \mp@subsup{z}{}{(k)}=\mp@subsup{\mathbf{H}}{}{\top}\mp@subsup{\overline{\mathbf{w}}}{}{(k)}
    \mp@subsup{\mathbf{x}}{}{(k)}=\mp@subsup{\overline{\mathbf{z}}}{}{(k)}/|\mp@subsup{\mathbf{z}}{}{(k)}\mp@subsup{|}{2}{}
    end for
```

- Works well for the noiseless case
- Convergence can slow down dramatically under additive noise
- Precoding for sparse mmWave channels ${ }^{1}$
- Hybrid beamforming ${ }^{2}$
- Beamspace MIMO for mmWave systems ${ }^{3}$
- Alternative eigenvalue iterations (i.e. Arnoldi iteration ${ }^{4}$)

[^0]Part 2: Proposed Beam Alignment Algorithms

9/22
PURDUE

Sequential Least Squares (SLS) Power Method

Compute least-squares channel estimate $\widehat{\mathbf{H}}_{e}$

Main Ideas

- Construct a least-squares (LS) estimate of the channel matrix using the sounding beams
- Compute greedy estimates of the singular vectors

Beamforming weights

$$
\begin{array}{r}
\mathbf{f}[k]=\frac{\widehat{\mathbf{H}}_{e, k}^{*} \mathbf{z}[k-1]}{\left\|\widehat{\mathbf{H}}_{e, k}^{*} \mathbf{z}[k-1]\right\|_{2}} \\
\mathbf{z}[k]=\frac{\widehat{\mathbf{H}}_{o, k} \mathbf{f}[k]}{\left\|\widehat{\mathbf{H}}_{o, k} \mathbf{f}[k]\right\|_{2}}
\end{array}
$$

Sequential Least Squares (SLS) Power Method

- Batch LS estimator:

$$
\widehat{\mathbf{H}}_{o, k}=\frac{\mathbf{Y}_{o, k}\left(\mathbf{F}_{k}\right)^{\dagger}}{\sqrt{\rho_{o}}}
$$

- Requires full-rank observation matrix $\mathbf{Y}_{o, k}$
- Instead, construct estimates sequentially:

$$
\widehat{\mathbf{H}}_{o, k}=f\left(\widehat{\mathbf{H}}_{o, k-1}, \mathbf{y}_{o}[k], \mathbf{f}[k]\right)
$$

Computational complexity

	Computational Count	Feedback
Sequential Least-Squares	$k_{\max } \cdot \mathcal{O}\left(M^{3}\right)$	$k_{\max } \cdot \mathcal{O}(M)$

$k_{\text {max }}=$ Number of beam alignment ping-pong slots
$M=\max \left(M_{t}, M_{r}\right)$

- SLS Power Method performs very well at high costs (feedback and computational overhead)

Summed Power Method

Main Ideas

- Derive beamforming weights as a function of the running sum of received observations
- Average over potentially noisy estimates during beam alignment

Summed Power Method

- Normalize using ℓ_{2}-norm

$$
\alpha_{k}=\frac{1}{\left\|\mathbf{s}_{e}[k]\right\|_{2}}, \quad \beta_{k}=\frac{1}{\left\|\mathbf{s}_{o}[k]\right\|_{2}}
$$

- Repeated conjugation and retransmission like in the simple power iteration
- Averaging observations reduces the effects of additive noise
- Little overhead
- No feedback necessary

Computational complexity

	Computational Count	Feedback
Sequential Least-Squares	$k_{\max } \cdot \mathcal{O}\left(M^{3}\right)$	$k_{\max } \cdot \mathcal{O}(M)$
Summed Power	$k_{\max } \cdot \mathcal{O}(M)$	-

$k_{\text {max }}=$ Number of beam alignment ping-pong slots
$M=\max \left(M_{t}, M_{r}\right)$

How to combine the positive properties of both techniques?

What are the tradeoffs?

- Idea: "prime" the beamformer estimates up to period $k_{\text {switch }}$ with the SLS method, then switch to the Summed Power Method

	Computational Count	Feedback
Sequential Least-Squares	$k_{\max } \cdot \mathcal{O}\left(M^{3}\right)$	$k_{\max } \cdot \mathcal{O}(M)$
Summed Power	$k_{\max } \cdot \mathcal{O}(M)$	-
LISP	$k_{\text {switch }} \cdot \mathcal{O}\left(M^{3}\right)+\left(k_{\max }-k_{\text {switch }}\right) \cdot \mathcal{O}(M)$	$k_{\text {switch }} \cdot \mathcal{O}(M)$

[^1]
Part 3: Simulation Results

Overview

	Computational Count	Feedback
Sequential Least-Squares	$k_{\max } \cdot \mathcal{O}\left(M^{3}\right)$	$k_{\max } \cdot \mathcal{O}(M)$
Summed Power	$k_{\max } \cdot \mathcal{O}(M)$	-
LISP	$k_{\text {switch }} \cdot \mathcal{O}\left(M^{3}\right)+\left(k_{\max }-k_{\text {switch }}\right) \cdot \mathcal{O}(M)$	$k_{\text {switch }} \cdot \mathcal{O}(M)$
BIMA 6	$k_{\max } \cdot \mathcal{O}(M)$	-
BSM^{7}	$k_{\max } \cdot \mathcal{O}(M)$	-

Metrics:

- Effective channel gain $\left|\mathbf{z}^{*}[k] \mathbf{H f}[k]\right|^{2}$
- Chordal distance to dom. sing. vector $\phi_{k}=\cos ^{-1}\left(\left|\mathbf{f}_{\mathrm{opt}}^{*} \mathbf{f}[k]\right|\right)$

[^2]
IID Rayleigh fading model

\leftrightarrow Summed Power	\bigcirc - SLS (Suboptimal)	$\times \times$ BIMA
$\nabla \longrightarrow$ SLS (Optimal)	\longmapsto LISP	$\Delta-\triangle$ BSM

Parameters:
$\rho_{e}=\rho_{o}=-10 \mathrm{~dB}, M_{r}=4, M_{t}=32, k_{\text {switch }}=\max \left(M_{r}, M_{t}\right)$

Sparse mmWave model

$\xrightarrow{\square}$ Summed Power	\bigcirc SLS (Suboptimal)	$\times \times$ BIMA
$\nabla \longrightarrow$ SLS (Optimal)	\downarrow LISP	$\triangle \triangle$ BSM

Parameters:
$\rho_{e}=\rho_{o}=-10 \mathrm{~dB}, M_{r}=4, M_{t}=32$,
$k_{\text {switch }}=\max \left(M_{r}, M_{t}\right)$

Channel model:
$\lambda / 2$-spaced ULAs, $f_{\mathrm{c}}=28 \mathrm{GHz}$, $K=3$ dominant clusters, one path/cluster

- Analytical framework for convergence analysis as function of SNR, antenna dimensions, etc.
- Impact of noisy feedback for SLS method
- Time-varying channels
- Application to hybrid beamforming systems
- Applications to machine learning, principal component analysis-type problems

Acknowledgments

This material is based upon work supported in part by the National Science Foundation under Grant No. CNS-1642982.

Backup

-Begin Backup Slides-
$23 / 22$

Sequential Least Squares (SLS) Power Method

Update Equations

- With the sequential algorithm, node 2 computes its estimate according to the update equation

$$
\begin{equation*}
\widehat{\mathbf{H}}_{o, k}=\widehat{\mathbf{H}}_{o, k-1}+\left(\frac{\mathbf{y}_{o}[k]}{\sqrt{\rho_{o}}}-\widehat{\mathbf{H}}_{o, k-1} \mathbf{f}[k]\right) \mathbf{K}_{o, k} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{K}_{o, k}=\frac{\mathbf{f}^{*}[k] \mathbf{C}_{o, k-1}}{1+\mathbf{f}^{*}[k] \mathbf{C}_{o, k-1} \mathbf{f}[k]} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{C}_{o, k}=\mathbf{C}_{o, k-1}\left(\mathbf{I}-\mathbf{f}[k] \mathbf{K}_{o, k}\right) \tag{3}
\end{equation*}
$$

Impact of Antenna Dimensions

I.I.D Rayleigh fading model

Sparse mmWave model

\longleftrightarrow Summed Power	\rightsquigarrow SLS (Suboptimal)	\star BIMA \boxtimes SLS (Optimal)
\longmapsto LISP	$\llcorner\Delta$ BSM	

Parameters:
$\rho_{e}=\rho_{o}=-10 \mathrm{~dB}, M_{r}=4, M_{t} \in\{6,8, \ldots, 64\}, k_{\text {switch }}=\max \left(M_{r}, M_{t}\right)$, 100 ping-pong slots

Impact of $k_{\text {switch }}$

$\stackrel{\text { Summed Power }}{ }$	\bigcirc - SLS (Suboptimal)	$\times \times$ BIMA
$\nabla \longrightarrow$ SLS (Optimal)	\longmapsto LISP	$\triangle \triangle$ BSM

Parameters:
$M_{r}=4, M_{t}=32$

IID Rayleigh fading model

$\xrightarrow{\square}$ Summed Power	\bigcirc SLS (Suboptimal)	$* \times$ BIMA
$\nabla \longrightarrow$ SLS (Optimal)	\longmapsto LISP	$\triangle \triangle$ BSM

Parameters:
$\rho_{e}=\rho_{o}=0 \mathrm{~dB}, M_{r}=4, M_{t}=32, k_{\text {switch }}=\max \left(M_{r}, M_{t}\right)$

IID Rayleigh fading model

\leftrightarrow Summed Power	\bigcirc - SLS (Suboptimal)	$\cdots \times$ BIMA
$\nabla \longrightarrow$ SLS (Optimal)	\longmapsto LISP	$\Delta-\triangle$ BSM

Parameters:
$\rho_{e}=\rho_{o}=20 \mathrm{~dB}, M_{r}=4, M_{t}=32, k_{\text {switch }}=\max \left(M_{r}, M_{t}\right)$

Beam Pattern evolution

Beam pattern of $\mathbf{f}[k]$ vs. beam pattern of $\mathbf{f}_{\text {opt }}$

Parameters:
$\rho_{e}=\rho_{o}=-10 \mathrm{~dB}, M_{r}=4, M_{t}=32,200$ ping-pong slots

[^0]: ${ }^{1}$ O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath Jr., "Spatially sparse precoding in millimeter wave MIMO systems," IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499-1513, Mar. 2014.
 ${ }^{2}$ F. Sohrabi and W. Yu, "Hybrid digital and analog beamforming design for large-scale antenna arrays," IEEE Journ. Sel. Topics in Sig. Proc., vol. 10, no. 3, pp. 501-513, Apr. 2016.

 3 J. Brady, N. Behdad, and A. M. Sayeed, "Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis and measurements," IEEE Trans. Ant. Propag., vol. 61, no. 7, pp. 3814-3827, Jul. 2013.
 ${ }^{4}$ H. Ghauch, T. Kim, M. Skoglund, and M. Bengtsson, "Subspace Estimation and Decomposition in large millimeter-wave MIMO systems," IEEE Journ. Sel. Topics in Sig. Proc., vol. 10, no. 3, pp. 528-542, Apr. 2016.

[^1]: ${ }^{5}$ D. Ogbe, D. J. Love, and V. Raghavan, "Noisy Beam Alignment Techniques for Reciprocal MIMO Channels," ArXiv:1609.03601 [cs.IT], Nov. 2016. [Online]. Available: http://arxiv.org/abs/1609.03601.

[^2]: ${ }^{6}$ T. Dahl, N. Christophersen, and D. Gesbert, "Blind MIMO eigenmode transmission based on the algebraic power method," IEEE Trans. Sig. Proc., vol. 52, no. 9, pp. 2424-2431, Sep. 2004, ISSN: 1053-587X. DOI: 10.1109/TSP. 2004.832000.
 ${ }^{7}$ S. Gazor and K. AISuhaili, "Communications over the best singular mode of a reciprocal MIMO channel," IEEE Trans. Commun., vol. 58, no. 7, pp. 1993-2001, Jul. 2010, ISSN: 0090-6778. DOI: 10.1109/TCOMM. 2010.07.090297.

