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Enemy’s 

interference Alliance’s 

information

Automatic Modulation Classification (1/3)

 Intermediate step between signal detection and demodulation

 Civilian and military applications

 The first time popular: in 2000

 Interference identification

 Electronic warfare

 Threat analysis

[1-5]
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Automatic Modulation Classification (2/3)

 Gradually become popular again (second half of 2016 ~ Now)

 Techniques: Deep learning (DL)

 Demands: 5G communications

 Increase traffic demands

 Reduce the signaling overhead of massive machine type devices 

 Offer different configurations in terms of Quality of Service (QoS)

 Intelligent modem by AMC

 Dynamically switch the rate of data transmission

 Without handshaking between Tx and Rx  latency & signaling overhead ↓

 Optimize resource utilization  spectrum management

AMC

𝐱𝒔𝒚𝒎𝒃𝒐𝒍
Modulator Channel

𝐓𝐱 R𝐱

𝐲
Demodulator

Preprocessor

Classifier
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Automatic Modulation Classification (3/3)

 Previous research works on AMC

 Likelihood-based approaches: determine the probability density function 

and apply hypothesis testing, ex: maximum likelihood

 Feature-based approaches: cumulant, maximum power spectral density, 

standard deviations amplitude, phase, frequency, …

 Limited performance in complicated environment, e.g., fading channel

[1-6]
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Automatic Modulation Classification

 Previous research works on AMC

 Likelihood-based approaches: maximum likelihood

 Feature-based approaches: cumulant

 Recent approaches

 Machine learning: support vector machine, K-nearest neighbor, genetic 

programming, …

 Deep learning: deep neural network, convolutional neural network

 Calculation of multiple decision thresholds is not convenient 

 learn the appropriate thresholds automatically

 Need high dimension of the feature set

 replace simplified analytic features to high-level features

[1-12]

[1-6]

[7-12]
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AMC Using Convolutional Neural Network

 1-dimension convolutional neural network

 Split signal into 𝐼-𝑄 two dimension

 Training data: received modulation signal

 2-dimension convolutional neural network

 Convert to image patterns

 Grid-like images

 Fix the image resolution 227*227

[12]

[10-11]
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Motivation & Goal

 Directly transform and learn on 𝐼-𝑄 domain 

may loss sense of communication

 Value of 𝐼-𝑄 has correlation

 Try to encode communication characteristic

 Only consider AWGN channel is not 

practical

 Power scaling and phase shift

 Severely degrade the performance

Power scaling

Phase shift
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Proposed Deep Architecture for AMC

 Polar feature transformation

 Transform the received symbols from 𝐼-𝑄 to 𝑟-𝜃 domain

 Encode communication characteristic

 Channel compensation network (CCN)

 Inspired by spatial transformer network

 Compensate for the distorted received signals

[9]
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Proposed Polar Feature Transformation

 Encode specific relation between 𝐼 & 𝑄

 𝑟𝑎𝑑𝑖𝑢𝑠[𝑛] = 𝐼[𝑛]2 + 𝑄[𝑛]2

 𝑡ℎ𝑒𝑡𝑎 𝑛 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑄[𝑛]

𝐼[𝑛]
)

 Make the system more robust to channel fading

𝐼- 𝑄 plane

𝑟- 𝜃 plane



ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU

P10

Realistic Environment: Channel Fading

 Besides to AWGN, received symbols suffer from channel imperfection 

effects

 Power scaling and phase shift
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Proposed Channel Compensation Network

 Inspired by spatial transformer network from Google DeepMind

 Learn the inverse channel parameters and reconstruct signals

 𝑟′ = 𝑟 × ∆𝑟

 𝜃′ = 𝜃 + ∆𝜃

[13]

: Convolutional layer: Dense layer

: Activation function (ReLU) : Maxpooling layer

: Flatten layer : Softmax layer

: Dropout layer (0.3)
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Deep Architecture with Channel Compensation 

Network

 The reconstructed signal is as input for the concatenated CNN model

 Loss function: categorical cross-entropy

36 x 36

(Polar Feature)
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Simulation Results – w/o Channel Fading

 Proposed polar feature based approach improves 5% and 26% 

recognition accuracy than image-based and cumulants approach 

when SNR equals to 0dB

Parameter Setups

Modulation type

QPSK

8PSK

16QAM

64QAM

SNR -4 ~ 12

Total training images 20000

Total testing images 4000

Symbol length 1000

[6]

[12]
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 Proposed polar feature transformation reduces the training overhead 

about 48% compared to image-based approach

 learning in 𝑟-𝜃 domain has better performance and faster convergence 

speed

 The inference time is short enough for real time applications

Run Time of Different Approach

Different AMC Approach
Training Time 

with GPU (s)

Inference Time 

with CPU (s)

Image-based 2D CNN [12] 52.9556 (1x) 9.31e-04

Proposed polar-based 2D CNN 27.5152 (0.52x) 9.31e-04
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Simulation Results – Under Channel Fading

 Polar feature based approach is more robust and more resistant to 

channel distortion  10% better than 𝐼-𝑄 based

 CCN can compensate the channel distortion and improve the recognition 

by 14%

Parameter Setups

Modulation type

QPSK

8PSK

16QAM

64QAM

SNR -4 ~ 12

Total training images 20000

Total testing images 4000

Symbol length 1000

Power scaling 0.2 ~ 1

Phase shift −𝝅 ~ 𝝅

[6]

[12]
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Conclusion

 Automatic modulation classification is attractive in 5G communications 

for realizing intelligent receiver

 Learning in 𝑟-𝜃 domain can improve recognition accuracy with faster 

convergence speed

 Channel compensation network (CCN) can compensate for the 

channel imperfection before learning and prediction

 Proposed approach is far more robust and more resistant under 

channel effect

Intelligent Inside Modem
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The end

Thank you for your listening
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Appendix
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AMC Using High-order Cumulant

 Fourth-order cumulant of the complex-valued signal

 መ𝐶20 =
1

𝑁
σ𝑛=1
𝑁 𝑟2[𝑛], መ𝐶21 =

1

𝑁
σ𝑛=1
𝑁 𝑟 𝑛 2

 መ𝐶40 =
1

𝑁
σ𝑛=1
𝑁 𝑟4[𝑛] − 3 መ𝐶20

 መ𝐶41 =
1

𝑁
σ𝑛=1
𝑁 𝑟3 𝑛 𝑟∗[𝑛] − 3 መ𝐶20 መ𝐶21

 መ𝐶42 =
1

𝑁
σ𝑛=1
𝑁 𝑟 𝑛 4 − መ𝐶20

2
− 2 መ𝐶21

2

[6]

Difficult for 

classification!


