

Graduate Institute of Electronics Engineering, NTU

2018 GlobalSIP

Polar Feature Based Deep Architectures for Automatic Modulation Classification Considering Channel Impairments

Speaker: Chieh-Fang (Jeff) Teng Email: jeff@access.ee.ntu.edu.tw Advisor: Prof. An-Yeu (Andy) Wu Date: 2018/11/29

Automatic Modulation Classification (1/3) [1-5]

- Intermediate step between signal detection and demodulation
- Civilian and military applications
- The first time popular: in 2000
 - Interference identification
 - Electronic warfare
 - Threat analysis

Automatic Modulation Classification (2/3) [1-5]

- Gradually become popular again (second half of 2016 ~ Now)
 - Techniques: Deep learning (DL)
 - Demands: 5G communications
 - Increase traffic demands
 - Reduce the signaling overhead of massive machine type devices
 - Offer different configurations in terms of Quality of Service (QoS)

Intelligent modem by AMC

- Dynamically switch the rate of data transmission
- Without handshaking between Tx and Rx \rightarrow latency & signaling overhead \downarrow
- ♦ Optimize resource utilization \rightarrow spectrum management

Automatic Modulation Classification (3/3) [1-6]

Previous research works on AMC

- Likelihood-based approaches: determine the probability density function and apply hypothesis testing, ex: maximum likelihood
- Feature-based approaches: cumulant, maximum power spectral density, standard deviations amplitude, phase, frequency, …
- Limited performance in complicated environment, e.g., fading channel

Automatic Modulation Classification [1-12]

- Previous research works on AMC [1-6]
 - Likelihood-based approaches: maximum likelihood
 - Feature-based approaches: cumulant
- Recent approaches [7-12]
 - Machine learning: support vector machine, K-nearest neighbor, genetic programming, …
 - Deep learning: deep neural network, convolutional neural network
- Calculation of multiple decision thresholds is not convenient
 Jearn the appropriate thresholds automatically
- Need high dimension of the feature set
 - → replace simplified analytic features to high-level features

AMC Using Convolutional Neural Network

- 1-dimension convolutional neural network [10-11]
 - Split signal into I-Q two dimension
 - Training data: received modulation signal
- 2-dimension convolutional neural network [12]
 - Convert to image patterns
 - Grid-like images
 - Fix the image resolution 227*227

Input data for 2D CNN model

Motivation & Goal

- Directly transform and learn on *I-Q* domain may loss sense of communication
 - Value of *I-Q* has correlation
 - Try to encode communication characteristic

- Only consider AWGN channel is not practical
 - Power scaling and phase shift
 - Severely degrade the performance

Power scaling Phase shift

Proposed Deep Architecture for AMC

- Polar feature transformation
 - **\diamond** Transform the received symbols from *I*-*Q* to *r*- θ domain
 - Encode communication characteristic
- Channel compensation network (CCN)
 - Inspired by spatial transformer network [9]
 - Compensate for the distorted received signals

Proposed Polar Feature Transformation

- Encode specific relation between I & Q
- * $radius[n] = \sqrt{I[n]^2 + Q[n]^2}$
- * theta[n] = $\arctan(\frac{Q[n]}{I[n]})$
- Make the system more robust to channel fading

Realistic Environment: Channel Fading

- Besides to AWGN, received symbols suffer from channel imperfection effects
 - Power scaling and phase shift

ACCESS IC LAB

Proposed Channel Compensation Network

- Inspired by spatial transformer network from Google DeepMind [13]
- Learn the inverse channel parameters and reconstruct signals
 - $r' = r \times \Delta r$

ACCESS IC LAB

Deep Architecture with Channel Compensation Network

- The reconstructed signal is as input for the concatenated CNN model
- Loss function: categorical cross-entropy

Simulation Results – w/o Channel Fading

Parameter	Setups	
Modulation type	QPSK 8PSK 16QAM 64QAM	90 80 70 5% 60 5% 60 5%
SNR	-4 ~ 12	50 - 26% P
Total training images	20000	40 -
Total testing images	4000	30 Conventional: Cumulant [6]
Symbol length	1000	20 -4 -2 0 2 4 6 8 10
		Signal-to-Noise Ratio (dB)

Proposed polar feature based approach improves 5% and 26% recognition accuracy than image-based and cumulants approach when SNR equals to 0dB

Run Time of Different Approach

Different AMC Approach	Training Time with GPU (s)	Inference Time with CPU (s)
Image-based 2D CNN [12]	52.9556 (1x)	9.31e-04
Proposed polar-based 2D CNN	27.5152 (0.52x)	9.31e-04

- Proposed polar feature transformation reduces the training overhead about 48% compared to image-based approach
- → learning in r- θ domain has better performance and faster convergence speed
- The inference time is short enough for real time applications

Simulation Results – Under Channel Fading

Parameter	Setups							
Modulation type	QPSK 8PSK 16QAM 64QAM	90 80 \$\vertic{1}{\\vertic{1}{\\\vertic{1}{\vertic{1}{\1						
SNR	-4 ~ 12	00 VCCRLaCX (%)						
Total training images	20000	TO 50 - 14%						
Total testing images	4000							
Symbol length	1000	40 10% Conventional: Cumulant [6]						
Power scaling	0.2 ~ 1	30 - Image-based 2D CNN [12] - Proposed polar-based 2D CNN						
Phase shift	$-\pi \sim \pi$	20 -4 -2 0 2 4 6 8 10 12						
		Signal-to-Noise Ratio (dB)						

- ✤ Polar feature based approach is more robust and more resistant to channel distortion → 10% better than *I*-*Q* based
- CCN can compensate the channel distortion and improve the recognition by 14%

Conclusion

 Automatic modulation classification is attractive in 5G communications for realizing intelligent receiver

- Learning in r-θ domain can improve recognition accuracy with faster convergence speed
- Channel compensation network (CCN) can compensate for the channel imperfection before learning and prediction
- Proposed approach is far more robust and more resistant under channel effect

Reference (1/2)

[1] Jondral, Friedrich K. "Software-defined radio: basics and evolution to cognitive radio." EURASIP journal on wireless communications and networking 2005.3 (2005): 275-283.

[2] Nolan, Keith E., et al. "Modulation scheme classification for 4G software radio wireless networks." Proc. IASTED. 2002.

[3] Haykin, Simon. "Cognitive radio: brain-empowered wireless communications." IEEE journal on selected areas in communications 23.2 (2005): 201-220.

[4] Sun, Hongjian, et al. "Wideband spectrum sensing for cognitive radio networks: a survey." IEEE Wireless Communications 20.2 (2013): 74-81.

[5] Dobre, Octavia A., et al. "Survey of automatic modulation classification techniques: classical approaches and new trends." IET communications 1.2 (2007): 137-156.

[6] Swami, A. and Sadler, B. M. "Hierarchical Digital Modulation Classification Using Cumulants," IEEE Transactions on Communications, 48 (3), 416–429, 2000.

[7] Cheol-Sun Park, Won Jang, Sun-Phil Nah. and Dae Young Kim, "Automatic Modulation Recognition using Support Vector Machine in Software Radio Applications," in Proc. 9th IEEE ICACT, Feb. 2007, pp. 9-12

Reference (2/2)

[8] X. Zhou, Y. Wu, B. Yang, "Signal Classification Method Based on Support Vector Machine and High-Order Cumulants," Sicintific research, Wireless Sensor Networks, No. 2, pp. 48-52, Nov. 2009.
[9] M. W. Aslam, Z. Zhu, A. K. Nandi, "Automatic Modulation Classification Using Combination of Genetic Programming and KNN," IEEE Transactions on wireless communications, vol.11, no.8, pp.2742-2750, Aug. 2012.

[10] O'Shea, Timothy J., Johnathan Corgan, and T. Charles Clancy, "Convolutional radio modulation recognition networks," International Conference on Engineering Applications of Neural Networks. Springer International Publishing, 2016.

[11] Nathan E. West and Timothy J. O'Shea, "Deep architectures for modulation recognition," In 2017 IEEE International Conference on Dynamic Spectrum Access Networks, March 2017.

[12] Peng, Shengliang, et al., "Modulation classification using convolutional Neural Network based deep learning model," 26th Wireless and Optical Communication Conference (WOCC), 2017 26th. IEEE, 2017.

[13] Jaderberg, Max, Karen Simonyan, and Andrew Zisserman. "Spatial transformer networks," Advances in Neural Information Processing Systems. 2015.

The end Thank you for your listening

Appendix

AMC Using High-order Cumulant [6]

Fourth-order cumulant of the complex-valued signal

$$\hat{c}_{20} = \frac{1}{N} \sum_{n=1}^{N} r^{2}[n], \ \hat{c}_{21} = \frac{1}{N} \sum_{n=1}^{N} |r[n]|^{2}$$

$$\hat{c}_{40} = \frac{1}{N} \sum_{n=1}^{N} r^{4}[n] - 3\hat{c}_{20}$$

$$\hat{c}_{41} = \frac{1}{N} \sum_{n=1}^{N} r^{3}[n]r^{*}[n] - 3\hat{c}_{20}\hat{c}_{21}$$

$$\hat{c}_{42} = \frac{1}{N} \sum_{n=1}^{N} |r[n]|^{4} - |\hat{c}_{20}|^{2} - 2\hat{c}_{21}^{2}$$

	C ₂₀	C ₂₁	C ₄₀	C ₄₁	C ₄₂
2-PAM	1.0000	1.0000	-2.0000	-2.0000	-2.0000
4-PAM	1.0000	1.0000	-1.3600	-1.3600	-1.3600
8-PAM	1.0000	1.0000	-1.2381	-1.2381	-1.2381
BPSK	1.0000	1.0000	-2.0000	-2.0000	-2.0000
QPSK	0.0000	1.0000	1.0000	0.0000	-1.0000
8-PSK	0.0000	1.0000	0.0000	0.0000	-1.0000
4-QAM	0.0000	1.0000	1.0000	0.0000	-1.0000
16-QAM	0.0000	1.0000	-0.6800	0.0000	-0.6800
64-QAM	0.0000	1.0000	-0.6191	0.0000	-0.6191

Difficult for classification!