
AMOS: An Automated Model Order Selection Algorithm
for Spectral Graph Clustering

Pin-Yu Chen1,2, Thibaut Gensollen1, Alfred Hero1

1Department of Electrical Engineering and Computer Science
University of Michigan

2IBM Thomas J. Watson Research Center

pin-yu.chen@ibm.com
{thibautg,hero}@umich.edu

March 8, 2017

P.-Y. Chen ICASSP 2017 March 8, 2017 1 / 12



Graph Clustering/Community Detection

Ground truth Observation Spectral Methods

eigenvector 

space

Goal: separate the nodes in the graph into groups of high similarity

Applications: network analysis, unsupervised learning, image
segmentation, recommendation systems, . . .
Challenge I: unknown number K of clusters (communities)

1 eigen-spectra based approach [Polito’01,Ng’02,Luxburg’07]
2 eigenvector based approach [Zelnik-Manor’04]

Challenge II: lack of absolute criterion for clustering reliability
→ many clustering evaluation metrics are relative criterion:

1 cut-based score: min-cut, ratio-cut, . . .
2 modularity
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Summary

Ground truth Observation Spectral Methods

eigenvector 

space

Highlights of this talk:
1 Spectral properties of Graph Laplacian matrix under a general

network model
2 An automated model order selection algorithm (AMOS) for spectral

graph clustering with statistical clustering reliability guarantees
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Block Representation for Clusters in Weighted Graphs

G = (V, E ,W): undirected weighted graph of n nodes and m edges

A: n× n binary adjacency matrix - [A]uv = 1 if (u, v) ∈ E
W: n× n nonnegative edge weight matrix - [W]uv > 0 if (u, v) ∈ E
Block representation of G with K clusters:

A =



A1 C12 C13 · · · C1K
C21 A2 C23 · · · C2K
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; W =



W1 W12 W13 · · · W1K
W21 W2 W23 · · · W2K
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.

Ak (Wk): an nk × nk adjacency (weight) matrix of within-cluster
edges in cluster k

Cij (Wij): an ni × nj adjacency (weight) matrix of between-cluster
edges of clusters i and j. Cij = CT

ji. Wij = WT
ji.
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Random Interconnection Model (RIM)

Random Interconnection Model (RIM) [Chen-Hero’16]

1 Ak and Wk arbitrary, 1 ≤ k ≤ K (within-cluster edges)

2 [Cij ]uv ∼ Bernoulli(pij), 1 ≤ i, j ≤ K, i 6= j (between-cluster edges)

3 [Wij ]uv ∼ common nonnegative bounded distribution with mean W ij

Block Models with  K = 2 clusters

stochastic block model (SBM) random  interconnection model (RIM)

Chen-Hero, “Phase Transitions and a Model Order Selection Criterion for Spectral Graph Clustering”, arXiv 2016
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“Signal + Noise” Perspective

“Noise”

(between-cluster edges)

“Signal” 

(within-cluster edges)
“Observed graph”
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Signal: within-cluster edges (fixed and arbitrary)

Noise: between-cluster edges (varying and random)

How does noise affect graph clustering? ⇒ phase transition analysis
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Spectral Graph Clustering (SGC) for K Clusters

The graph G is undirected, weighted, and connected

spectral graph clustering (SGC) for K clusters:
1 Obtain the graph Laplacian matrix L = S−W. S is a diagonal

strength (degree) matrix. (λk(L),yk): k-th smallest eigenpair of L.
2 Compute the 2nd to the K-th smallest eigenvector of L,

Y = [y2,y3, . . . ,yK ] ∈ Rn×(K−1).
3 K-means clustering on the rows of Y to obtain K groups.
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Phase Transition Analysis of SGC under RIM

nk : # of nodes in cluster k. nmin = mink nk. nmax = maxk nk.
Lk : graph Laplacian matrix of cluster k
Block noise level: tij = pij ·W ij . tmax = maxi,j tij .

Theorem (Homogeneous RIM: tij = t)

Let S2:K(L) =
∑K

k=2 λk(L) and Y = [y2 · · · yK ] = [YT
1 YT

2 · · · YT
K ]T ,

Yk ∈ Rnk×(K−1). When one sweeps t, there exists a critical value t∗ such
that the following holds almost surely as nk →∞ ∀ k and nmin

nmax
→ c > 0:

(a) (separability)

{
If t < t∗, Yk =

[
vk11, v

k
21, . . . , v

k
K−11

]
= 1vT

k

If t > t∗, YT
k 1nk

= 0K−1

(b) (noise level bounds) tLB ≤ t∗ ≤ tUB, where
tLB =

mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmax
; tUB =

mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmin
.

For inhomogeneous RIM (tij arbitrary), if tmax < t∗, then cluster
separability in Y can be guaranteed
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Automated Model Order Selection (AMOS) for SGC

Utilize phase transition analysis for determining the number of clusters
(model order) and evaluating clustering quality (noise estimation)

K=2

K=K+1

Reject 

RIM

K=K+1

FAIL

Graph Data

Obtain K 

clusters via 

spectral 

clustering

RIM test via

p-value

Automated 

clusters

PASS

Homogeneous 

RIM phase 

transition test

FAIL

Inhomogeneous 

RIM phase 

transition test

Homogeneous 

RIM test

FAIL

PASS

PASS

Iterating K, obtain clusters {Ck}Kk=1 from SGC
1 Check between-cluster connectivity {Ĉij} fits the RIM or not (V-test)
2 If every Ĉij fits the RIM, estimate the RIM parameters using {Ck}Kk=1
3 Homogeneous RIM test: homogeneous or inhomogeneous RIM (GLRT)
4 Homogeneous RIM phase transition test: test t̂ < t̂LB
5 Inhomogeneous RIM phase transition test: test t̂max < t̂LB
6 Stop if item 4 or item 5 is true

Provide statistical interpretation of clustering reliability
Efficient incremental SGC [Chen-Zhang-Hasan-Hero KDD-MLG’16]
AMOS codes: https://github.com/tgensol/AMOS
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Performance Evaluation

Comparative automated graph clustering methods:
1 Louvain: greedy modularity maximization [Blonde’08]
2 NB: spectral method using non-backtracking matrix [Krzakala’13]
3 ST: self-tuning algorithm based on graph Laplacian [Zelnik-Manor’04]
Dataset Method NMI Rand Index F-measure Conductance Normalized Cut
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AMOS is superior in most of clustering metrics
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Conclusion and Ongoing Work

Phase transition analysis of spectral graph clustering (SGC) under
random interconnection model (RIM)

Cluster separability (inseparability) in the eigenvector matrix Y of
graph Laplacian matrix L w.r.t. noise level t (between-cluster edges)

Closed-form expression for upper and lower bounds on t∗

AMOS: theory-driven automated SGC with statistical clustering
reliability guarantees

Comparing multiple clustering metrics, AMOS outperforms 3 other
automated methods in the datasets

Ongoing work: automated graph clustering for multi-layer graphs
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