WIFS 2015

The 7th IEEE International Workshop on Information Forensics and Security

Rome, Italy, 16-19 November, 2015

Cyber-physical intrusion detection on a robotic vehicle

Tuan Vuong, George Loukas and Diane Gan University of Greenwich, London, UK



Look for: • Hidden threat

Source: Internet

How about: • Motion detection •Heat map

Camouflaged sniper with a rifle

Source: Internet

Robotic vehicles

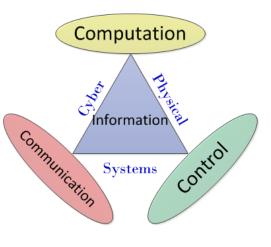
- Our Cyber-Physical System (CPS) testbed:
 - Computer-control: Linux laptop
 - Control physical entities: Wheels, Batteries, Camera, Accelerometer, ...
 - Network of interacting elements: Wifi, Ethernet

• CPS samples:

automated driving source: Carnegie Mellon University

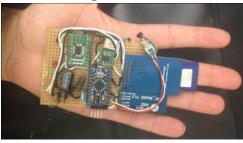
human-robot collaboration source: Rethink Robotics

Smart grids source: Siemens


automated farming source: Kesmac

source: daVinci

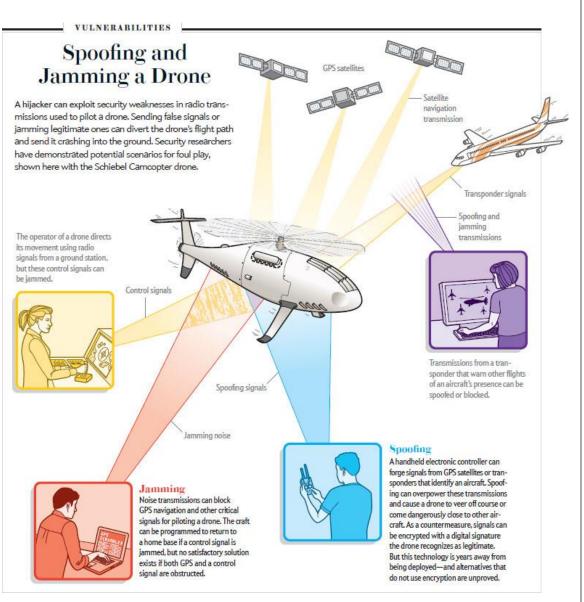
Air traffic control source: NASA



Source: Wu 2011

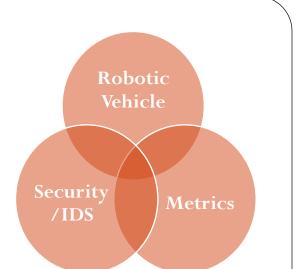
WIFS 2015 – Tuan Vuong

Security Challenges

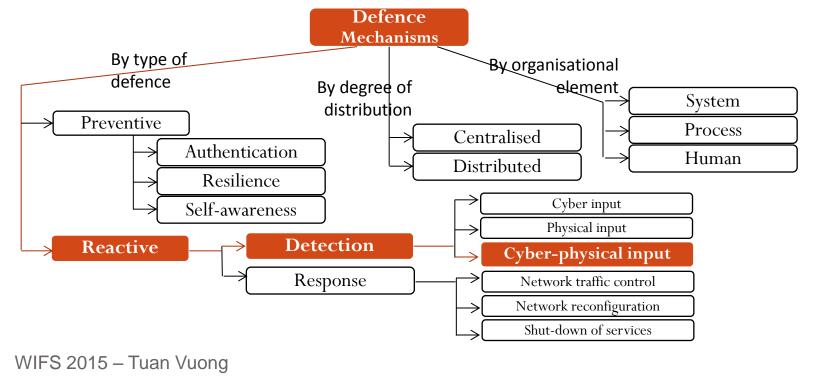

- Hack-a-car¹:
 - 02/2014, Wired, \$20
 - Windows, lights, steering, brakes

- Kill a jeep in highway²:
 - 07/2015, Wireless
 - Dashboard, steering, brakes, transmission

WIFS 2015 – Tuan Vuong



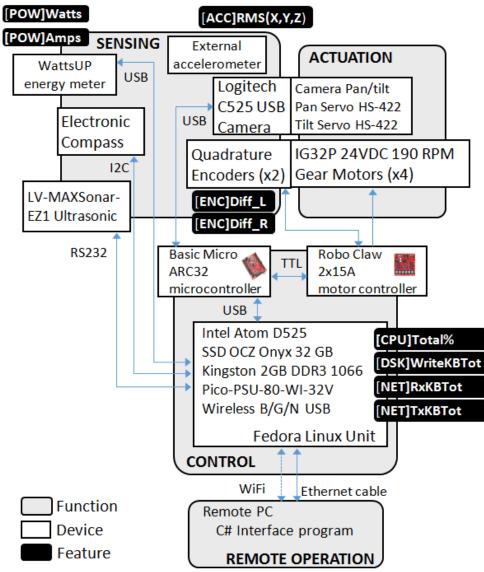
• Spoofing and jamming a drone³

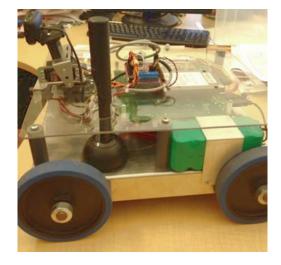

Aims

• Research aims:

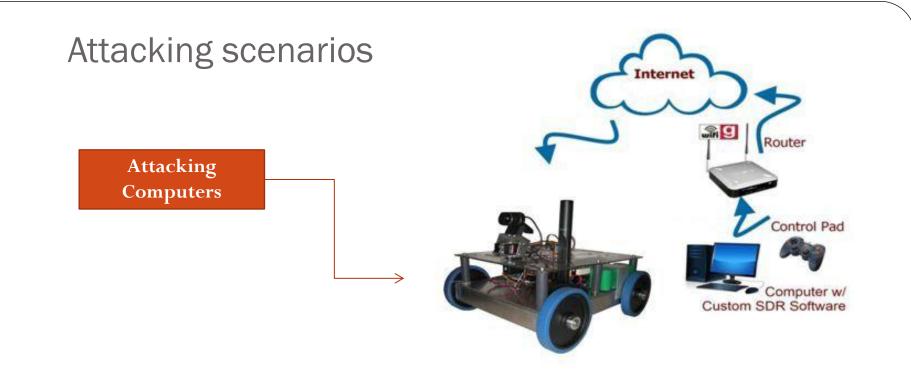
- Light-weight on-board system for robotic vehicle
- Cyber attack detection using both cyber and physical features.
- Performance metrics for intrusion detection in CPS.

Applying Machine Learning to Robotic Vehicle's Intrusion Detection


Intrusion detection approaches


INTRUSION DETECTION APPROACHES FOR ROBOTIC AND MOBILE CYBERPHYSICAL SYSTEMS

Year:	Ref.	Туре	Comms	Location	Attack Types	Input Features	Detection approach
2011- 2013	Mitchell, Chen [13], [14], [15]	Mobile CPS	Wireless	Host Based, Network Based	Bad Command Injection, Node Hijack	Position, Battery Exhaustion Rate Nodes Compromised	Dynamic IDS Voting, Positional Discontinuity, Enviroconsistency
2008- 2009	Fagiolini et al. [16], [17]	Multi-Robot System	Wireless	Host Based, Decentralized	Misbehaviour	Node Reputation, Behaviour score, Distance Estimation	Clustered Monitoring, Voting
2015	Bonaci et al. [18]	Robotic Surgery System	Wired	Host Based, Network Based	Intent Modification, Control Hijack	Motor Performance, Network Performance	Recommendations for Network Monitoring
2014	Shetty et al. [19]	Multi-Robot System	Wireless	Host Based, Network Based Decentralized	Denial Of Service	Lack of Connectivity	Network Monitoring
2014	Vuong et al. [7]	Remote- controlled Robot	Wired	Host Based	Denial Of Service	Motor Performance, Network Peformance	Rule-based
2014	Zeng et al. [20]			Host Based,		Network Performance, Behaviour Score, Node Reputation,	Reputation Based,
2014	Fagiolini et al. [21] Bicchi et al.	Multi-Robot System	Wireless	Role Based Network Based Decentralized	Node Failure, Node Misbehaviour	Neighbour State, Neighbour Actions,	Consensus Based, Set-Valued Consensus
2008	[22]					System Configuration, Agent Position	


- Intrusion Detection goals
 - 1. Common attacks
 - 2. Light-weight
- 3. On-board
- 4. Cyber & physical features

Components

Indicators	Function	Data Sources	
Encoders	Sensing	Robot	
Power	Sensing	PC	
Accelerometers	Sensing	Smart Phone	
CPU Data	Control	Robot	
Network	Control	Robot	
Disk Data	Control	Robot	

EXPERIMENTAL SCENARIOS

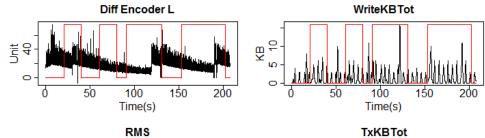
Conditions

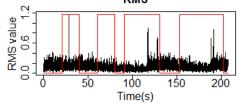
TCP traffic flood

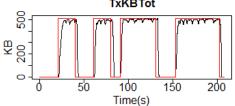
Rogue cmd "STOP" or "LEFT"

Modify NET control setting

Resource-demanding tasks

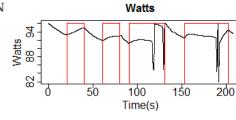

Camera feed + legitimate cmd

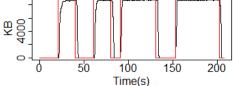

S#	Туре	Impact observed
S1	DoS	Inconsistent stops
S2	Command Injection	Frequent consistent jittering
S3	Malware (NET)	Frequent consistent stops
S4	Malware (CPU)	No clear physical effect
S5	Normal operation	No adverse effect

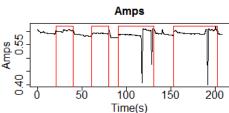

Features & Labelling

- Data collection
 - Features: 8 + 1 labelling (ground truth)
 - Each has different sample rate
 - Collected 52,215 points per feature

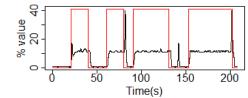
• Data during DoS attack scenario

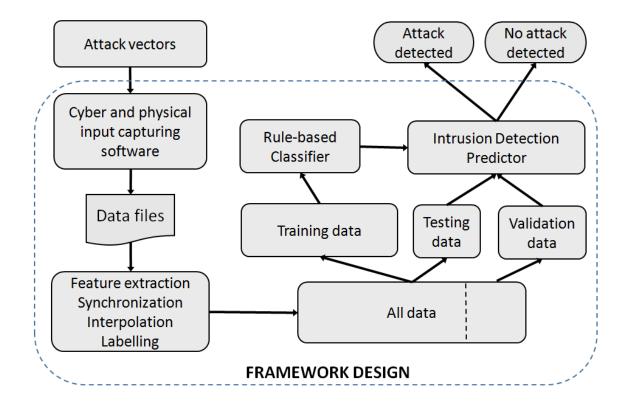




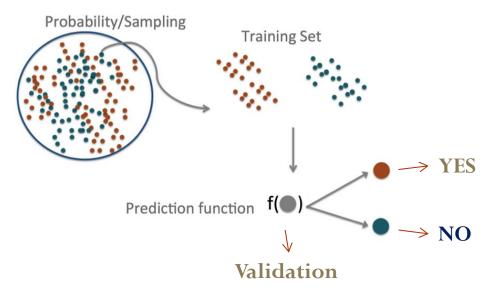

CYBER (C) AND PHYSICAL (P) FEATURES AND THEIR COLLECTION PERIOD

Feature name	Description and Type (C	Period (T)	
RxKBTot	Network receive (KB)	C	1.0 s
TxKBTot	Network transmit (KB)	C	1.0 s
CPU	Total CPU usage (%)	C	1.0 s
WriteKBTot	Disk Write Data (KB)	C	1.0 s
DiffEncoderL	Change in Left Encoder	P	30 ms
RMS	Vibration of chassis	P	20 ms
Watts	Power consumption (W)	P	1.0 s
Amps	Electric Current (A)	P	1.0 s
Label	Attack Flag (1,0)		1.0 s




CPU

Framework


• Data preparation:

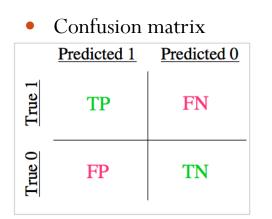
- 5 scenarios
- Cyber & physical data from different sources
- Feature extraction
- Synchronization
- Interpolation
- Labelling

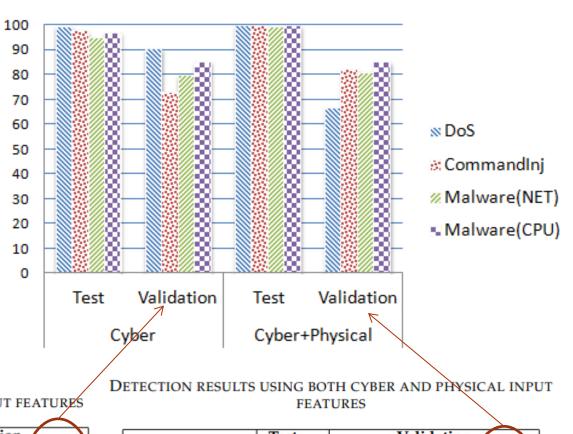
- Prediction study design
 - 80% for training (70% randomly) and testing (30%)
 - 20% for validation

Machine Learning Algorithm

- Decision Tree C5.0 using R programming language (widely used for data analysis)
 - Transformation less important, robust to set of attributes
 - Fast, compact when trained
 - Simple to understand/interpret
 - Problem: over-fitted

```
Algorithm consideration:
```

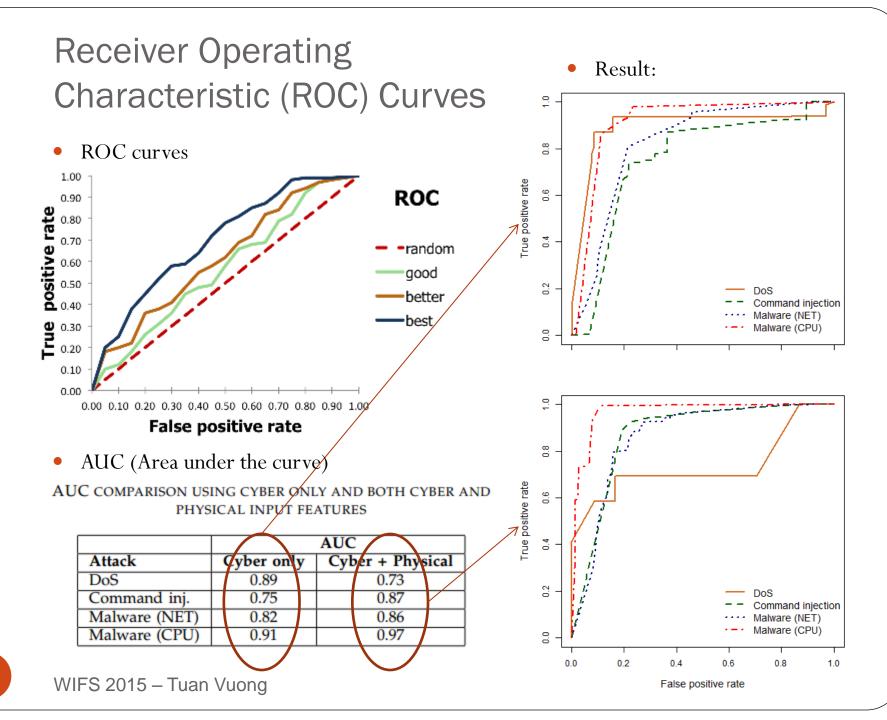

- Performance
- Data/features: transformation
- Type: Binary classification


```
Decision tree:
```

```
Amps <= 0.6098701:
:...Amps <= 0.5962737: 0 (9802/3)
    Amps > 0.5962737:
    :...Watts <= 92.19859: 1 (18)
        Watts > 92.19859:
        :...WriteKBTot <= 3.892: 0 (172)
            WriteKBTot > 3.892:
            :...CPU <= 2.032: 0 (4)
                CPU > 2.032: 1 (8)
Amps > 0.6098701:
:...Amps <= 0.613997:
    :...Watts > 96.03431: 0 (35)
        Watts <= 96.03431:
        :...CPU <= 3.376004: 0 (9/2)
            CPU > 3.376004: 1 (155)
    Amps > 0.613997:
    :...Watts <= 97.85741: 1 (555)
        Watts > 97.85741:
        :...Watts > 98.1: 1 (545)
            Watts <= 98.1:
            :...Watts <= 97.9:
                :...WriteKBTot <= 0.01599979: 1 (42)
                    WriteKBTot > 0.01599979: 0 (23)
```

Evaluation: Confusion matrix

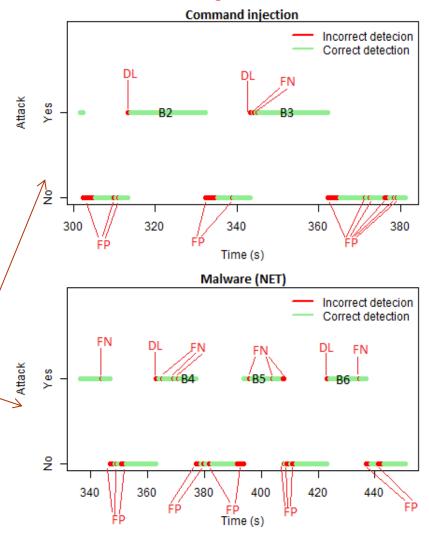
Result:



DETECTION RESULTS USING ONLY CYBER INPUT FEATURES

	Test	est Validatio		
Attack	ACC%	FPR%	FNR%	ACC%
DoS	99.45	15.77	7.26	90.47
Command inj.	97.58	31.79	22.34	72.80
Malware (NET)	94.99	21.42	18.99	79.70
Malware (CPU)	97.03	21.16	6.76	85.31

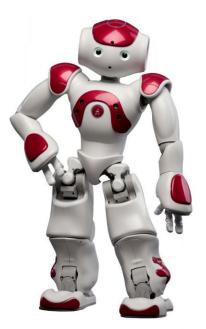
	Test		1	
Attack	ACC%	FPR%	FNR%	ACC%
DoS	99.84	10.76	41.44	66.70
Command inj.	99.53	29.60	5.74	81.99
Malware (NET)	99.20	25.70	11.31	80.92
Malware (CPU)	99.72	5.43	26.18	85.24

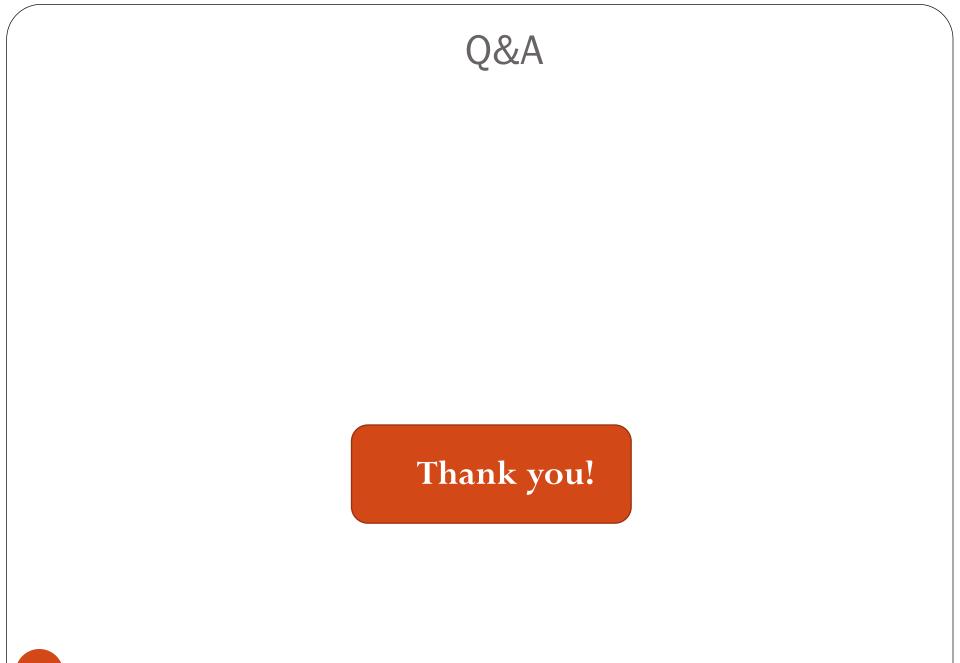

Detection Latency

- Real-time for CPS
- Various factors:
 - Data collection time (gathering & measuring): different frequency per feature
 - Preparation time: pre-processing (cleaning scaling, normalizing), interpolation,
 - Detection accuracy: TP (true positive) vs. FN (false negative)

	Attack block (s)			Detection latency		
Attack	Block	Start	End	C (ms)	C+P (ms)	
DoS	B1	374.04	423.04	1020	1000	
Command inj.	B2	312.32	331.32	2020	1460	
	B3	342.32	361.32	2340	1040	
Malware (NET)	B4	362.02	376.02	2020	1940	
	B5	393.02	407.02	1520	1000 🔍	
	B6	422.02	436.02	2020	2020	
Malware (CPU)	B7	360.06	374.04	2020	1200	
	B8	390.06	404.04	1000	1000	
	B9	420.7	435.04	1000	1020	

DETECTION LATENCY (MS) FOR DIFFERENT ATTACK TYPES (CYBER ONLY VS. CYBER + PHYSICAL)


- Detection result:
 - DL: Detection Latency
 - **FP : False Positive**
 - FN: False Negative



Conclusion and future work

- Conclusion:
 - Light-weight on-board intrusion detection for robotic vehicle
 - Four attacks and detection performance with and without physical features
 - Performance metrics: Confusion matrix, ROC Curve, and Detection latency
- Future work:
 - Improve current technique (over-fitted, time-series)
 - More attack types (communication jamming, relay attacks..)
 - Unknown attack, other detection methods
 - Additional test beds

WIFS 2015 – Tuan Vuong