

OUT-OF-LABEL SUPPRESSION DISCRIMINATIVE DICTIONARY LEARNING WITH CLUSTER REGULARIZATION

Xiudong Wang (wang-xd14@tsinghua.edu.cn) and Yuantao Gu (gyt@tsinghua.edu.cn)

Dept. EE, Tsinghua Univ., Beijing, China

Introduction

- Dictionary learning (DL) is an important research topic
- Sparse representation improves robustness
- We propose a supervised DL method for classification

Motivation

- Traditional DL inserts sparseness measures (ℓ_0 or ℓ_1 -norm) into the cost function to induce sparse representation
- Sparseness measures are usually nonsmooth or even discontinuous, hence the iterative solving method can be timeconsuming
- In supervised DL, the discriminative characteristics among sub-dictionaries and representative coefficients are not well exploited

Contribution

- Out-of-Label suppression and Cluster regularization are proposed
- The learned discriminative dictionary is ready for classification
- Analytical solution is obtained for subproblems due to the use of *l*₂-norm regularization

Experimental Results

• Face Recognition @ Yale Face Method Accuracy Method Accuracy SVM 94.42^{±2.80} DLSI 72.70 The effect of out-of-label suppressio He 88.70 LC-KSVD 73.60 SRC 74.60 Wang 89.26 84.61^{±4.05} COPAR 78.30 Joint D-KSVD 73.20 FDDL 73.20 GCC Ours(LCC) 93.65±3.26 Ours(GCC) 95.92±2.23 The effect of cluster regularization 10^{-1}

 Object Recognition @ Caltech1010 							
Method	Accuracy	Method	Accuracy	0.09 0.00 per			
Irani	70.64	LC-KSVD	73.60	0 0.04 0.04 220 230 240			
Yang	73.20	LLC	73.44	الموا المردام والعوا المناه			
SVM	71.98	COPAR	71.75	The effect of out-of-la			
SRC	70.70	K-SVD	73.20	and cluster regulariza			
Spanias	72.40	DLSI	70.34	870 380 390			
D-KSVD	73.00	Ours(GCC)	77.94				
				50 100 150 200 250 The Diction			

0 20 26	Сог
	Met
e effect of out-of-label suppression	FD
11 11 1	CO
Musikianii alikaani	Ours
100 160 200 200 200 300 300 400 400 500 500 The Dictionary Atem <	

• Texture Recognition @ DynTex ++

		Method	Accuracy	Method	Accuracy
nputational Cost		SVM	$90.85^{\pm 0.28}$	Zhao	89.80
		SRC	88.53	Xu	89.90
hod	Train time(s)	FDDL	94.21 ± 0.42	Ghanem	63.70
DL	1279.89	kgLC-dic	92.80	kgSC-dic	93.20
PAR	520.22	K-SVD	89.31	DLSI	$91.56^{\pm 1.22}$
(I CC)	26 92	Joint	89.40	COPAR	$94.32^{\pm 0.17}$
(200) 20:02		D-KSVD	89.27	LC-KSVD	89.67
		MCDL	90.35	Ours(LCC)	95.72 ^{±0.50}

