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Sparse Reconstruction

Goal:

Recover x, € RY from measurements y = Az, + w € RM

Assumptions:

m x, is sparse

m A is known and high dimensional
m often M <« N

mw~ N(0,7,I)
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Regularized loss minimization

Popular approach:
& = argmin 3|y — Az|? + A f(x)
where

m f(x) is a regularizer, e.g., ||z||; in LASSO or BPDN
m )\ > 0 is a tuning parameter
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The iterative soft thresholding algorithm (ISTA)
ISTA:

initialize 2°=0
fort=0,1,2,...

vl =y — A residual error
' = g@' + ATv'") thresholding

where
g(r) = argmin gl|r — @[3 + Af(x) = prox,(r)
|A||3 < 1 ensures convergence! with convex f(-).
When f(x) = ||x||1 we get “soft thresholding”

[g(r)]; = sgn(r;) max{0, |rj| — A}

1Daubechies,Defrise,DeMoI—CPAM'O4
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Approximate Message Passing (AMP)

Donoho, Maleki, and Montanari2 proposed:

initialize 2°=0, v =0
fort=0,1,2,...

vl =y — Az’ + %v“%gt*l/(ﬁ_l + ATﬁt_1)> corrected residual
ﬁt-l-l :gt(?ct —|—AT’Ut)

thresholding

where

<9/(7’)> £ % Z;VZI 6%];(;) “divergence.”
Note:

m “Onsager correction” aims to decouple the errors across iterations.
m The thresholding g'(-) can vary with iteration ¢.

2 Donoho,Maleki,Montanari-PNAS’09
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I
AMP vs ISTA (and FISTA)

Example: LASSO problem with i.i.d. Gaussian A:
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3Beck Teboulle-JIS'09
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M =250, N =500
Pr{z, # 0} =0.1
SNR= 40dB

Convergence to —35dB:

e |STA: 2407 iterations
e FISTA:3174 iterations
e AMP: 25 iterations
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.
The limitations of AMP

m AMP’s good performance is guaranteed only for large i.i.d. zero-mean
sub-Gaussian A.

m Deviations from this condition can cause AMP to diverge.

m Can we extend AMP to a larger class of matrices?
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I
Vector AMP (VAMP)

The recent vector AMP#algorithm for linear regression is

W~

fort=0,1,2,...
z) =g(riiH)

9gr .
O‘i = %ZJ 6? (rtlarﬁ)

t __ 1 =t t. .t
T2 = 124t r (@] —airy)
t 751—ozt1
T2 = Nt

thresholding

divergence

Onsager correction

precision of 75

of = % Tr [(ATA/?w +450) 71

t+1 _ tot
T = a( 0427“2)
t+1 _ _t1— ocg
Y1 =2 o

& = (ATA/R, +451) " (ATy /7y +4br})

LMMSE

divergence
Onsager correction

- t+1
precision of 7]

4Rangan,Schniter,Fletcher — arxiv:1610.03082
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YRR

-]
VAMP without matrix inverses <

LMMSE matrix inverse step is easy if the SVD A = USV " is known.
Note if k(A) =1 %, the SVD is trivial US o«c I,V ox AT .

fort=0,1,2,...
z' = g(rﬁ; fyf) thresholding
al = ~ Z] s L (pl:At) divergence
rh = ﬁ(@t — aﬁrﬁ) Onsager
=t 1;?5 precision
ob = % Zj 75/(53./?10 + 75) divergence
M= V(8 RT) STy - SV 2 matec
A = fyé 1= precision

Se.g. punctured DFT,DCT,DWT
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Why call this “Vector AMP" ?

1) Can be derived using an approximation of message passing on a factor
graph, now with vector-valued variable nodes.

2) Performance characterized by a rigorous state-evolution® under certain
large random A:

SVDA=USV"T

m U is deterministic
m S is deterministic

m V is uniformly distributed on the group of orthogonal matrices

“A is right rotationally invariant”

6 Rangan,Fletcher,Schniter-16
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-]
Message-passing derivation of VAMP

m Write joint density as p(z,y) = p(x)p(y|z) = p(x)N (y; Az, 7, I)
p(z) B—OF BN (y; Az, 7, 1)

m Variable splitting: p(x1,x2,y) = p(x1)d(x1 — 22)N (y; Az, 7o 1)
p(z1) H

Eal T2

WV (y; Azz, 7, )
(5(:1:1 — 1‘2)
m Perform message-passing with messages approximated as AN (u, 0%1).

m An instance of expectation-propagation’ (EP).
m Also derivable through expectation-consistent approximation® (EC).

7Minka—Dissertation'Ol
8Opper,WintherfN|PS'04, Fletcher,Rangan,Schniter-ISIT'16
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Deep learning for sparse reconstruction

m Until now we've focused on designing algorithms to recover x, € X
from measurements y = Ax, + w.

Y — algorithm —= 2

model X', A

m What about training deep networks to predict x, from y?
Can we increase accuracy and/or decrease computation?
/

deep ~

Y= network [~ %

training data {(za,yq)}2,

m Are there connections between these approaches?
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-]
Unrolling ISTA

First, rewrite ISTA as

vl =y — Az

SET—-ATA
~t+1 ~t .
51— g(a + ATot) & |2 = g(Sx" 4+ By) with

B2 AT

Then “unroll” into a network:
O SP mfyiﬂﬂﬁiﬂagiiﬁ}iﬂéﬁ
vp

Note cascade of linear “S,"” bias “By," & separable non-linearity “g(-)."

ISTA algorithm < deep neural network
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I
Learned ISTA (LISTA)

Gregor and LeCun® proposed to learn (via backpropagation) the linear
transform S and soft thresholds {\'}]_; that minimize training MSE

D
. ~ 2
argm@mE |Z(y s ©) — x4
m - d=1
.
w -
g
= The resulting “LISTA” beats
[0} .
@ o5l [e 1sTA ., ] LASSO-AMP in convergence
<4 —e— FISTA ™ .
6 —e AMP '\*“ speed and asymptotic MSE!
B0 | LisTA ]
| —¥— LISTA untied |
% ‘ | ‘ Further improvement when S
5 10 15 20 e M ad” t\T
is “untied” to {S*}._,.
layers / iterations { }t—l
9Glregor,LeCun—ICML'lO
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I
Learned AMP (LAMP)

tth LISTA layer:

ZtH

,vt—i-l

Yy

to exploit low-rank BYA! in linear stage S = I — B'A'.

tth LAMP layer:

7 —aPT T
v B (R, a9 v
Y M
&
Yy Yy

Onsager correction now aims to decouple errors across layers.
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-]
LAMP performance under soft thresholding

LAMP beats LISTA in both convergence speed and asymptotic MSE.

average NMSE [dB]
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I
Simulation/Training Details

m Bernoulli-Gaussian & € R, known Gaussian A € R?59%5%0 40dB SNR
m TensorFlow implementation on GPU

m Adam!®SGD in mini-batches of 1000 vectors

m Add layers by greedy extension, then whole-network fine-tuning

m Reported results are for an untrained validation set

loKingma,BA'IS
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LAMP with more sophisticated denoisers

So far, we used soft-thresholding, so as to compare directly to LISTA.

What happens when we learn other denoisers?

a0t —x—LISTA ] Here we learned the parameters
—8— LAMP-I1 . e L
A LAMP-bg of these denoiser families:
o 15T —— LAMP-expo | |
2 ol ~Oo~ LAMP-pwiin | | m scaled soft-threshold (Lamp-¢;)
% —+— LAMP-spline
support oracle . .
= 25 1 m Bernoulli-Gaussian MMSE
Q
g % m Exponential kernel!
%
z -35)
° m Piecewise Linear!!
40 + 1
oal2
. | | ! ‘ m Spline
2 4 & 8 10 12 14 o |
layers Big improvement!

1]'Guo,Davies—TSP'IS
Kamilov,Mansour-SPL'16
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LAMP &= versus VAMP &>

How does our best Learned AMP compare to (unlearned) VAMP?

—0— LAMP-pwlin
—A— VAMP-bg

average NMSE [dB]

support oracle| |

2 4 6 8 10 12 14
layers / iterations

So what about “learned VAMP” ?
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.
Learned VAMP

m Suppose we unroll VAMP and learn (via backprop) the parameters
{S* g'}L_, that minimize the training MSE.

r

o+ N(0,751) z, + N(0,7{1)

|
0;
| L o L
| a ~t
i st = ° g'() =
|
|
|

o+ N(0,751) ’—‘ z, +N(0,71)

% 5! e Lgﬁ(»

L

Can we improve VAMP with learning?

Borgerding,Schniter (Ohio State) Onsager and Deep Learning GlobalSIP'16 20 / 23



-]
Learning VAMP

—+—LISTA
10 1 7\ —&— LAMP-bg
O LVAMP-bg
| | Remarkably, a5 L 7tfg;;;2eﬂdc;/r:x§
backpropagation does not B @
improve matched VAMP! l‘é N
=T ]
i =
m Matched VAMP specifies Yl
optimal network § wl s I
parameters in closed form, ® : .._a
. .. 40 |
without training. i
. To—o—6—6-—0-4
45 . . L Bogg g B
2 4 6 8 10 12 14

layers / iterations
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Non iid sub-Gaussian A

m What happens if A is not

iid sub-Gaussian?

m We replaced the singular
values from our previous
matrix with a log-spaced
sequence so k(A) = 15.

m Basic AMP fails to
converge!

m VAMP's advantages
become even clearer!

m In large-system limit,
VAMP can handle
arbitrarily large k(A)

Borgerding,Schniter (Ohio State)
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Conclusions

m For sparse reconstruction, AMP has some nice properties:

m low cost-per-iteration
m fast convergence,
m rigorous state evolution,

but only under large i.i.d. Gaussian A.

m Vector AMP has the same nice properties under large rotationally
invariant A.

m “Learned ISTA" results from unrolling ISTA and fitting its parameters
to training data. We proposed learned AMP & learned VAMP.

m MSE-optimal parameters of VAMP can be specified in closed form,
without training, when signal/noise statistics are known.

For details, see Borgerding,Schniter arXiv 1612.01183
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