Full-duplex vs. Half-duplex secret-key generation

Hendrik Vogt, Aydin Sezgin

WIFS 2015 Rome, Italy

Fakultät für Elektrotechnik und Informationstechnik

www.dks.rub.de

November 18th, 2015

Contents

1 Full-duplex and key generation

2 System model

3 Performance metrics

4 Results

Fakultät für Elektrotechnik und Informationstechnik

www.dks.rub.de

November 18th, 2015

Contents

1 Full-duplex and key generation

- **2** System model
- **③** Performance metrics
- **4** Results

Classic secret-key generation

Basic idea: Utilize reciprocal channel states as shared secret

Channel estimation by half-duplex (HD) probing

Classic secret-key generation

Basic idea: Utilize reciprocal channel states as shared secret

- Channel estimation by half-duplex (HD) probing
- Alice and Bob "talk" about their estimations by HD communication (key reconciliation)

Classic secret-key generation

Basic idea: Utilize reciprocal channel states as shared secret

• Channel estimation by half-duplex (HD) probing

Alice and Bob "talk" about their estimations by HD communication (key reconciliation)

Reduce leakage to eavesdropper (privacy amplification)

Classic secret-key generation

Basic idea: Utilize reciprocal channel states as shared secret

- Channel estimation by half-duplex (HD) probing
- Alice and Bob "talk" about their estimations by HD communication (key reconciliation)
- Reduce leakage to eavesdropper (privacy amplification)
- Bit strings are declared as secret key

In-band full-duplex (IBFD)

• IBFD means transmitting/receiving at the same time and frequency band

- Key technology in 5G
- Self-interference problem is challenging, but manageable (successful **prototypes**!)

In-band full-duplex (IBFD)

• IBFD means transmitting/receiving at the same time and frequency band

- Key technology in 5G
- Self-interference problem is challenging, but manageable (successful **prototypes**!)

Key advantage

Simultaneous channel probing is downgrading an eavesdropper!

Proposed secret-key generation

Channel estimation by full-duplex (FD) probing

Alice and Bob "talk" about their estimations by FD communication (key reconciliation)

3 . . .

Contents

1 Full-duplex and key generation

2 System model

③ Performance metrics

4 Results

Nodes in scene

- Single-antenna scenario, multi-antenna Eve emulated by higher correlation
- Channels comply with real-valued flat-fading model
- Alice and Bob can switch between HD and FD mode

System model

Execution flow

Probing phase	Obtain channel estimations by probing
Reconciliation phase	Alice transmits message to Bob
Key generation	Based on estimations and reconciliation, Alice and Bob agree on a key $% \left({{{\left[{{{\left[{{\left[{{\left[{{\left[{{\left[{{\left[$

Probing phase (HD mode)

Alice	$x = \sqrt{\operatorname{snr}} h_{ba} + n_a$
Bob	$y = \sqrt{\operatorname{snr}} h_{ab} + n_b$
Eve	$z_1 = \sqrt{\operatorname{snr}_{ae}} h_{ae} + n_{ae}$
	$z_2 = \sqrt{\operatorname{snr}_{\operatorname{be}}} h_{be} + n_{be}$

- Channels h_{ij} are jointly Gaussian distributed with zero mean and unit variance
- Correlation measure $\mathbb{E}\left[h_{ba}h_{ab}\right] = \boldsymbol{\delta}\cdot\rho_{ba}$
- Parameter $0 < \delta < 1$ denotes the **penalty** of delayed HD probing

System model

Probing phase (FD mode)

Alice	$x = \sqrt{\operatorname{snr}} h_{ba} + \frac{\alpha}{\sqrt{\operatorname{snr}}} n_{la} + n_a$
Bob	$y = \sqrt{\operatorname{snr}} h_{ab} + \frac{\alpha}{\sqrt{\operatorname{snr}}} n_{lb} + n_b$
Eve	$z = \sqrt{\operatorname{snr}_{ae}} h_{ae} + \sqrt{\operatorname{snr}_{be}} h_{be} + n_e$

- Alice and Bob suffer from Gaussian self-interference (SI)
- Parameter $0 < \pmb{\alpha} < 1$ denotes the strength of residual SI
- Eve obtains only a superposition of probing signals

System model

Reconciliation phase

- Alice sends an authenticated, public message to Bob
- This is point-to-point communication over a fading channel
- Bob has only **partial** channel state information

Communication rate R_p

Number of bits per channel use that satisfy reliability condition

Contents

- **1** Full-duplex and key generation
- **2** System model

③ Performance metrics

4 Results

Rates

Secret-key rate R_{sk}

Number of bits per channel estimation that satisfy

- Reliability
- Oniformity
- Secrecy

conditions.

• Functional relationship between R_{sk} and communication rate R_p : Key-communication function

Key-communication function

$$R_{sk}(R_p) = \frac{\beta}{2} \log_2 \frac{1 - 2^{-2\frac{R_p}{\beta}} (\|\boldsymbol{b}_x\|^2 - \|\boldsymbol{e}_x\|^2) + \|\boldsymbol{b}_x\|^2}{1 + \|\boldsymbol{e}_x\|^2}$$

β	Time-sharing of probing and reconciliation phase
R_p	Communication rate during reconciliation phase
$\ oldsymbol{b}_x\ ^2$	Quality of legitimate users' estimation
$\ oldsymbol{e}_x\ ^2$	Quality of Eve's estimation

Key-communication function

$$R_{sk}(R_p) = \frac{\beta}{2} \log_2 \frac{1 - 2^{-2\frac{R_p}{\beta}} (\|\boldsymbol{b}_x\|^2 - \|\boldsymbol{e}_x\|^2) + \|\boldsymbol{b}_x\|^2}{1 + \|\boldsymbol{e}_x\|^2}$$

Property

 R_{sk} is **positive** if and only if **1** $R_p > 0$, **2** $\|\boldsymbol{b}_x\|^2 > \|\boldsymbol{e}_x\|^2$ hold. Performance metrics

Key-communication function

$$R_{sk}(R_p) = \frac{\beta}{2} \log_2 \frac{1 - 2^{-2\frac{R_p}{\beta}} (\|\boldsymbol{b}_x\|^2 - \|\boldsymbol{e}_x\|^2) + \|\boldsymbol{b}_x\|^2}{1 + \|\boldsymbol{e}_x\|^2}$$

- We apply the key-communication function to HD and FD modes
- HD mode Upper bound

$$R_{sk}^{\mathsf{HD}}(R_p^{\mathsf{HD}}) < \overline{R}_{sk}^{\mathsf{HD}}$$

• FD mode - Lower bound

 $R_{sk}^{\rm FD}(R_p^{\rm FD}) > \underline{R}_{sk}^{\rm FD}$

Full-duplex vs. Half-duplex secret-key generation Results

Contents

- **1** Full-duplex and key generation
- **2** System model
- **③** Performance metrics

4 Results

Results

HD vs. FD performance

• Parameters $\rho_{ae} = \rho_{be} = \rho_e = 0.4$, $\rho_{ba}^2 = 1$, $\delta = 0.97$, $snr_{ae} = snr_{be} = snr$ and $\beta = 0.5$

Results

Probing-reconciliation trade-off

Time-sharing β between **probing** and **reconciliation** phase can be optimized

• Parameters: $\rho_{ba} = 1$, $\delta = 0.95$, $\rho_{ae} = \rho_{be} = \rho_e = 0.4$, $\operatorname{snr}_{ae} = \operatorname{snr}_{be} = \operatorname{snr}$ and $\alpha = -15$ dB.

Results

Conclusion

- We formulate a system model for <u>channel probing</u> and <u>reconciliation</u> phases for **HD** and **FD** modes
- We derive the <u>key-communication function</u> and provide bounds for **HD** and **FD** modes
- Simulations show FD system often performs better than HD, the impact of SI is insignificant
- Trade-off between probing and reconciliation phase is different for HD and FD modes

Thank you! Any questions?