Dropout Approaches for LSTM Based Speech Recognition Systems USC Viterbi

Jayadev Billa jbilla@isi.edu Information Sciences Institute, USC Viterbi School of Engineering

CONTRIBUTION

- Empirical study on dropout in LSTM-CTC ASR systems

SYSTEM

Librispeech 100hr best (dev-clean, this paper)

Kaldi (p-norm DNN, LDA+MLLT+SAT, 100hrs)

Kaldi (p-norm DNN, LDA+MLLT+SAT, 460hrs)

GALE Arabic 250hr best (this paper)

Kaldi (TDNN chain model, MMI, 415hrs)

Kaldi (TDNN/LSTM chain model, MMI, 415hrs)

PRIOR WORK

- Until recently, limited success with dropout in ASR
- Many options proposed
- Apply on feed forward connections (early attempts...) - Apply within recursion – but where?

We systematically explore and extend this earlier work

BASE SYSTEM

- EESEN based LSTM-CTC ASR
- 40 mel-fbank features + Δ + $\Delta\Delta$, trigram LM
- Max perturbation data augmentation

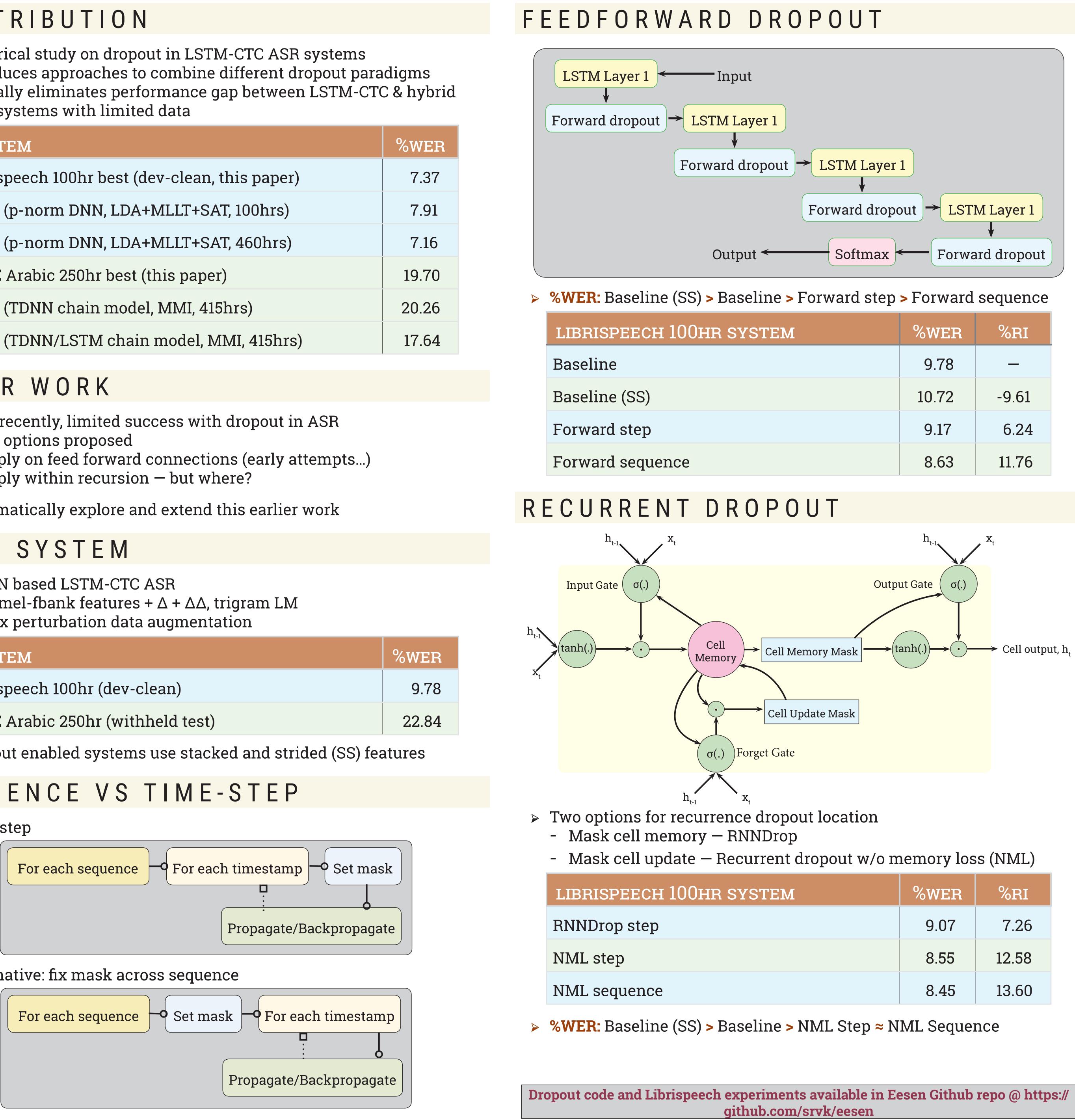
SYSTEM

Librispeech 100hr (dev-clean)

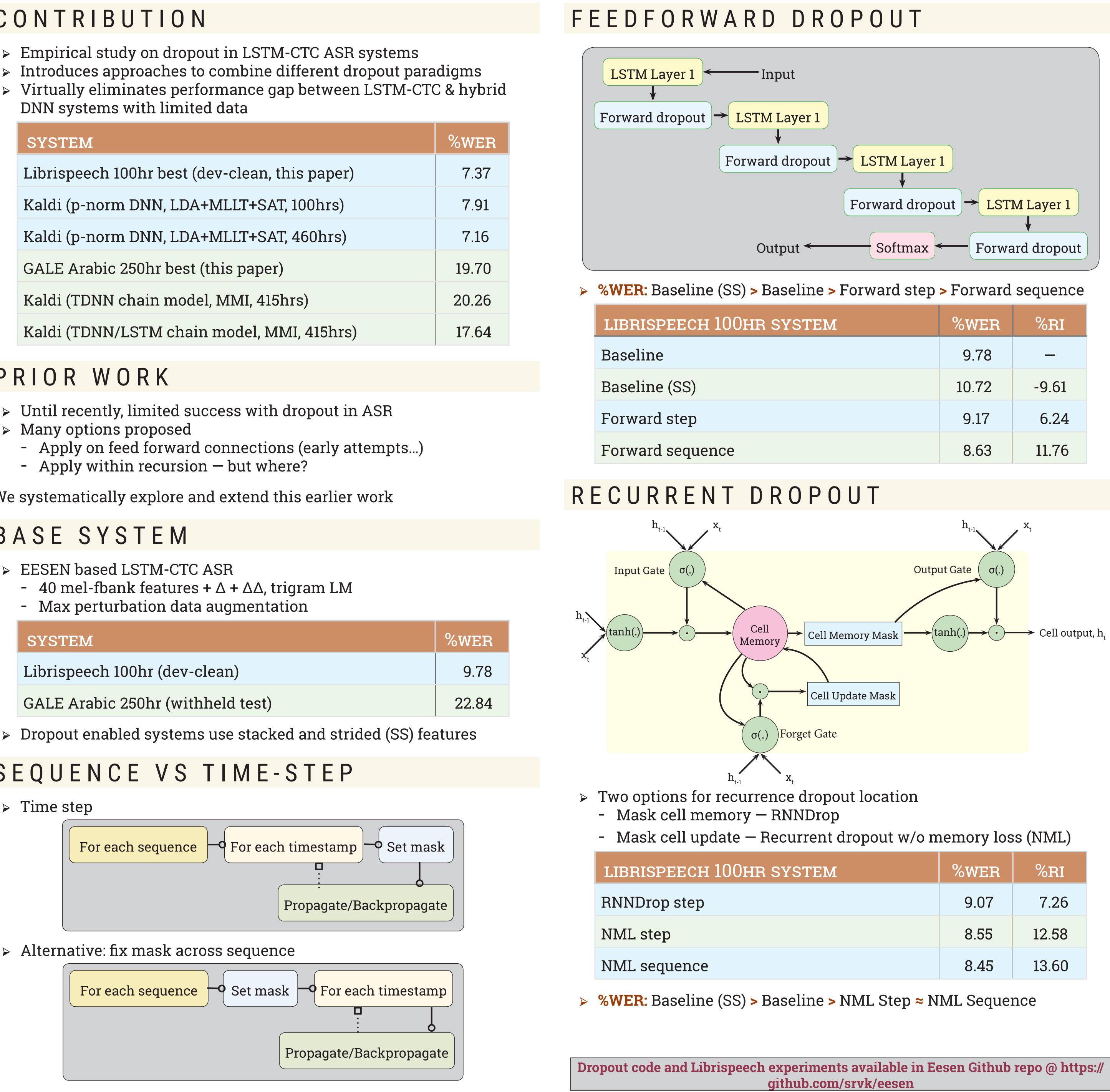
GALE Arabic 250hr (withheld test)

SEQUENCE VS TIME-STEP

➢ Time step



Alternative: fix mask across sequence

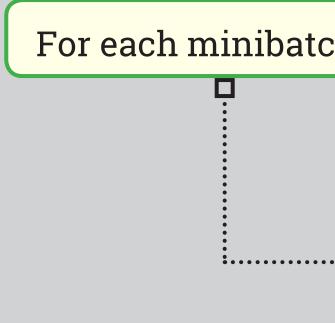


%WER	%RI
9.78	
10.72	-9.61
9.17	6.24
8.63	11.76

%WER	%RI
9.07	7.26
8.55	12.58
8.45	13.60

COMBINING DROPOUT

LIBRISPEECH 100HF **RNNDrop step + Forwa** RNNDrop step + Forwa NML step + Forward s⁻ NML step + Forward se **NML sequence + Forwa** NML sequence + Forw



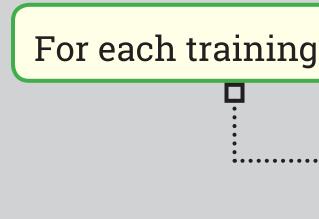
LIBRISPEECH 100HF

- NML step + Forward s NML step + Forward se NML sequence + Forw
- **NML sequence + Forwa**

GALE ARABIC 250H

Baseline

- NML sequence + Forw



LIBRISPEECH 100H

- NML sequence + Forw
- NML sequence + Forw
- Cascade ①→②

School of Engineering

Naive – apply forward and recurrent dropout all the time

R SYSTEM	%WER	%RI
ard step	8.60	12.07
ard sequence	8.85	9.51
step	8.08	17.38
equence	7.76	20.65
vard step	7.72	21.06
_		
vard sequence	7.97	18.51

Stochastic – decide which dropout to apply per minibatch

ch Choose dropout implementation		
	Forward propagate	
Update	Back propagate	

R SYSTEM	%WER	%RI
step	8.76	10.43
sequence	8.02	18.00
vard step	7.86	19.63
vard sequence	7.44	23.93

R SYSTEM	%WER	%RI
	22.84	_
vard sequence	19.70	13.75

Cascade – Train in stages with different dropout type in each stage

g stage – o	Choose dropout implementation	
		6
• • • • • • • • • • • • • • • • • • • •		Train

R SYSTEM	%WER	%RI
vard step ①	7.72	21.06
vard sequence ②	7.97	18.51
	7.37	24.64

> A dropout schedule is a particular instance of cascade combination Stochastic and cascade combination are complimentary.