ATIME-RESTRICTED SELF-ATTENTION
JOHNS HOPKINS LAYER FOR A.SR s CENTER FOR LANGUAGE

WHITING SCHOOL 12 \UDD).& ANDSPEECH PROCESSING

of ENGINEERING Daniel Povey“, Hossein Hadian®, Pegah Ghahremani'!, Ke Li', Sanjeev Khudanpur®: 30
ICenter for Language and Speech Processing,
Human Language Technology Center of Excellence, Johns Hopkins University.

Layer Overview

Attention ’ Attention

(a)

Figure 1: (a) The proposed self-attention layer and the comprising components. (b) A single-head attention component. Left and right context sizes are 2 and 1
respectfully. For clarity, positional-encoding and the softmax (which is applied to the dot-products) are not shown. (¢) A multi-head attention component (which is
used in the attention layer) using single-head attention blocks. K, Q, and V respectively mean key, query, and value.
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e The attention component interprets its input
b b b Figure 3: Attention weight vector c; for different

x+ as being three things appended together: Figure 2: Weight vector ¢; averaged over all heads - . s The horizontal axis <h

g: and k; and vy which are the query, key for an attention layer with 150 heads and context :“. CLILI0N CONHgUTALIONS. € orizontal axis SNOWS
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and value respectively. The order in which [—45, 45].

we divide the input to key/query/value is not

e The output y; is a weighted sum (over time)
of the values v;, where the weights are deter-
mined by dot products of the queries and the

important as long as we do it consistently. Results
keys (normalized via softmax):
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e Since our attention mechanism 1is time-
restricted, we use a one-hot encoding of the
relative position of 7 versus t to enable posi- Conclusion

tional encoding.
5 We introduced a time-restricted self-attention layer and used it in our state-of-the-art LE-MMI neural

e This is not “attention-based speech recogni- networks, replacing a TDNN or LSTM layer.

tion" — we are not using attention to replace
the left-to-right alignm;gnt of the HMM pIt - e We found that using a single selt-attention layer towards the end of the network can improve the

simply an alternative to TDNN and LSTM WER by 0.2-0.6 in our TDNN and TDNN-LSTM setups (except on WSJ).
layers in our model topology. e In TDNN-LSTMs, it can also speed up decoding by 20%.
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