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Layer Overview
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Figure 1: (a) The proposed self-attention layer and the comprising components. (b) A single-head attention component. Left and right context sizes are 2 and 1
respectfully. For clarity, positional-encoding and the softmax (which is applied to the dot-products) are not shown. (c) A multi-head attention component (which is
used in the attention layer) using single-head attention blocks. K, Q, and V respectively mean key, query, and value.

Background
• Attention: A mechanism which allows the

network to focus on the relevant part of the
input at each time step.

• Self-attention: An attention mechanism
where the input and output sequence lengths
are the same.

• Attention-based models have recently been
successfully applied to a variety of tasks such
as machine translation, caption generation,
and phoneme recognition.

• Multi-head attention: An attention layer with
multiple heads which can jointly attend to dif-
ferent subspaces of the input representation.
Recently proposed and used for NMT [1].

Time-restricted Self-Attention
• We propose a self-attention layer which is

time restricted, i.e. it is suitable for ASR
where the input sequence can be very long
(also see Figure 2 on the right).

• The attention component interprets its input
xt as being three things appended together:
qt and kt and vt which are the query, key
and value respectively. The order in which
we divide the input to key/query/value is not
important as long as we do it consistently.

• The output yt is a weighted sum (over time)
of the values vt, where the weights are deter-
mined by dot products of the queries and the
keys (normalized via softmax):

yt =
t+R∑
τ=t−L

ct(τ)vτ (1)

• Since our attention mechanism is time-
restricted, we use a one-hot encoding of the
relative position of τ versus t to enable posi-
tional encoding.

• This is not “attention-based speech recogni-
tion" – we are not using attention to replace
the left-to-right alignment of the HMM. It is
simply an alternative to TDNN and LSTM
layers in our model topology.

Initial Experiments
• The number of heads did

not significantly affect the
performance. We used 30
in the experiments.

• We found that a key/value
dimension ratio of 0.5
works best.
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Figure 2: Weight vector ct averaged over all heads
for an attention layer with 150 heads and context
[−45, 45].
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Figure 3: Attention weight vector ct for different
attention configurations. The horizontal axis shows
time.

Results
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Conclusion
We introduced a time-restricted self-attention layer and used it in our state-of-the-art LF-MMI neural
networks, replacing a TDNN or LSTM layer.
• We found that using a single self-attention layer towards the end of the network can improve the

WER by 0.2-0.6 in our TDNN and TDNN-LSTM setups (except on WSJ).
• In TDNN-LSTMs, it can also speed up decoding by 20%.
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