Directional Maximum Likelihood Self-Estimation of the Path-Loss Exponent

Objectives

1 Estimation of PLE in case of clustered nodes. 2 Maximum likelihood (ML) solution, using the distribution of RSS.

Oerive Cramér-Rao lower bound (CRLB).

Introduction

- The path-loss exponent (PLE) is very **crucial** for efficiently designing wireless communications and networking systems.
- Most existing methods for estimating the PLE:
- require nodes with **known locations**;
- assume **an omni-directional PLE**;
- change some **configurations** of the receiver;
- require some **information of the network**, e.g., the node density.
- Our previous work [1]:
- two (weighted) total least squares solutions;
- Simple, pervasive, local, sole, collective, secure and **directional** estimation for the PLE.
- However, the remaining problems:
- can **NOT** cope with **clustered nodes**.
- **NOT** the **ML** solution.
- obtaining the **CRLB** is **NOT** possible.
- In \mathbb{R}^m , the RSS with only geometric path loss

$$P_r = Cr^{-\gamma},$$

- C is the constant including the transmit power P_t
- r is the nodal distance
- γ is the PLE

Yongchang Hu and Geert Leus

Circuits and Systems (CAS) group, Delft University of Technology, the Netherlands

Pareto distribution for RSS

RSS follows a truncated $Pareto$ distribution Type	In I
I $ \mathbb{P}(P_r m, \gamma, P_{r,min}, P_{r,max}) = \begin{cases} \frac{m}{\gamma} \frac{P_{r,min}^{m/\gamma} P_r^{-m/\gamma-1}}{1 - (P_{r,min}/P_{r,max})^{m/\gamma}}, & P_r \in [P_{r,min}, P_{r,max}], \\ 0, & \text{otherwise}, \end{cases} $	ın square error (MSE)
• $P_{r,min} \triangleq Cr_{max}^{-\gamma}$	Mea
• $P_{r,max} \triangleq \min\{Cr_{min}^{-\gamma}, P_t\}$	
Accordingly, the CRLB is $CRLB(\gamma) = \frac{1}{\mathcal{I}(\gamma)}$.	
$\mathcal{I}(\gamma) = -\frac{n}{\gamma^2} - \frac{2mnln(P_{r,min})}{\gamma^3} + \frac{2n[(\gamma + m)]}{\gamma^3}$	$\frac{nln(F)}{r}$
$+ \frac{nm(\frac{P_{r,min}}{P_{r,max}})}{2}$	$\frac{m}{\gamma}ln(\frac{H}{H})$

Important Result

• The RSS based on only a geometric path-loss is first found to follow a truncated *Pareto* distribution. ² The CRLB is introduced and decreases with more samples, a small PLE and a close node cluster. ³ Two ML self-estimators of the PLE are derived and yield a good performance close to the CRLB.

ML solutions

• $P_{r,min}$ and $P_{r,max}$ are known: solve

$$\frac{n\gamma}{m} - \sum_{i=1}^{n} \left(ln \frac{P_i}{P_{r,min}} \right) + \frac{n \left(\frac{P_{r,min}}{P_{r,max}}\right)^{m/\gamma} ln \left(\frac{P_{r,min}}{P_{r,max}}\right)}{1 - \left(\frac{P_{r,min}}{P_{r,max}}\right)^{m/\gamma}} = 0.$$

• $P_{r,min}$ and $P_{r,max}$ are unknown: rank the RSSs as $P_{(1)} < \cdots < P_{(n)}$ and solve

$$\frac{n\gamma}{m} - \sum_{i=1}^{n} \left(ln \frac{P_i}{P_{(1)}} \right) + \frac{n \left(\frac{P_{(1)}}{P_{(n)}}\right)^{m/\gamma} ln \left(\frac{P_{(1)}}{P_{(n)}}\right)}{1 - \left(\frac{P_{(1)}}{P_{(n)}}\right)^{m/\gamma}} = 0.$$

- Solve by a simple bisection method.
- Shadowing effect, if considered, has an insignificant influence.

Node Cluster

Homogeneous random networks

[1] Yongchang Hu and G. Leus.

Self-estimation of path-loss exponent in wireless networks and applications.

IEEE Transactions on Vehicular Technology, 64(11):5091-5102, Nov 2015.

[2] Sunil Srinivasa and Martin Haenggi.

Path loss exponent estimation in large wireless networks. In Information Theory and Applications Workshop, 2009, pages 124–129. IEEE, 2009.

Acknowledgements

This work is supported by the China Scholarship Council (CSC) and the Circuits and Systems (CAS) group, Delft University of Technology, the Netherlands.

Contact Information

Email: {y.hu-1, g.j.t.leus }@ tudelft.nl • Phone: +31 (06) 16083682

