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The Problem — Patch-Based Image Denoising

¢ State-of-the-art approaches denoise images in patches
Noisy patch y: Dataset Clean estimate = y

e — i

» The choice of patch-size is ill-posed
» Large patches are more robust to noise
« However, good matches are hard to find — the rare patch effect
« Small patches risk over-fitting to the noise
« But can retain fine details, by avoiding the rare patch effect



The Problem — Patch-Based Image Denoising

® Prior work on the patch-size problem
— Use larger patches to handle higher noise
— Use a locally adaptive region of the patch for reconstruction
« Retain edges and fine details
— Multi-scale
« Combine reconstructions at several patch-sizes

® We propose a Largest Matching Area (LMA) approach

— Find the largest noisy patch with a good clean estimate,
subject to the constraints of the available data



The Problem — Patch-Based Image Denoising

® Existing patch-based denoising approaches fall into two camps

— External denoising approaches use a priori knowledge such
as training data

* Eg. Sparse Representation (SR)

Noisy patch Sparse Representation Clean estimate
y: Dictionary D: aD = y:
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The Problem — Patch-Based Image Denoising

® Existing patch-based denoising approaches fall into two camps

— External denoising approaches use a priori knowledge such
as training data

* Eg. Sparse Representation (SR)
— Internal denoising approaches use the noisy image itself
* Eg. Block-Matching 3D (BM3D)

Noisy image: Final reconstruction:




The Problem — Patch-Based Image Denoising

® Existing patch-based denoising approaches fall into two camps

— External denoising approaches use a priori knowledge such
as training data

* Eg. Sparse Representation (SR)
— Internal denoising approaches use the noisy image itself
* Eg. Block-Matching 3D (BM3D)

® Structured regions are better denoised by external approaches
® Smooth regions are better denoised by internal approaches

® Our Largest Matching Area (LMA) approach finds a patch-size
where the structure of the clean signal is easily recognisable

— The LMA approach has a preference for external denoising



Fixed Patch-Size Example-Based Denoising

Test Image y, =25 Clean Training Examples x

— Ty gL
Y Y - 4
4 3
! p —

-

-
-
-
-

p——
——

lyii; — x|

p()’k,i,jlxlrcr,lu,v) = a exp(— 12 )

Test patch yy ; ;
size 2k +1) x
(2k+1)



Fixed Patch-Size Example-Based Denoising
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Average Example-Based Reconstructed

Accuracy Across Fixed Patch-Sizes

Fixed-Size Example-Based Reconstruction
35 | T | | I I

—t+—g10—o—g 25 —+—g 50

¢ 100

1 2 3 4 5 6 7 8 9

—t+—g10—o—g 25 —+—g 50

¢ 100

I
08— + e

|

SSIM

04{//
0.27

4 5 = &
0.6

Patch Size (k)

10



The LMA Approach — A MAP Algorithm

Ynij

YVk,i,j

Yn,i,j

m
Xnu,v

® For each test image location
— lteratively increase the patch-size

* Find the most likely matching
patch

» Break when posterior
probability is maximised

M o . P( 'T?L; | )
Xj,u,0 — argmax max Xp ul v |Yn,4,]

n m’u v

® Reconstruct by averaging
overlapping matches, x;", ,



The LMA Approach — A MAP Algorithm

Ykiij Posterior Probability:

P(xlrcr,lu,vlyk,i,j)
p()’k,i,j |x11<7}u,v)

Yni,j ! Zy! ' P (Yk,,i, ilxe: u',v') +DWk,i,j1Pr)

Ynij

* P(x;{tu,vb/n,i,j) SP(x;c?:tu,v|.’yk,i,j)

A good match at size k produces a higher
posterior probability than a good match at
the smaller size n
xn,u,v
« The posterior probability can be used to
identify the largest matching patches




The LMA Approach — A MAP Algorithm

yk, .’ . . . . 1
b * To avoid selecting partially matching

patches, we enforce monotonicity of
posterior probability
 Derivative across patch sizes > 0

Yn,i,j Yn,i,j
* Find the best match at each size,
subject to monotonicity of posterior
over previous Sizes:
X[ = argmax max  P(x]u v |yn.i)
. m xm o n m’u v s
X nu,v nuv

S.t. Vi P(Xpww|Yn,i) = 0foralln <k




Average Reconstructed Accuracy of the

LMA Approach vs. Fixed-Size Patches

Fixed-Size Example-Based Reconstruction
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LMA Extensions to Existing Approaches

® Sparse Representation-LMA (SR-LMA)

— We learn Sparse Representation (SR) dictionaries at a range of
patch-sizes

— Select the reconstruction which maximizes posterior probability
— Combining SR training data invariance with LMA noise robustness

® BM3D-LMA
— Search noisy image, ranking largest matching areas
— Filter with optimal BM3D parameters

— Improve noise robustness by identifying similar patches using a
larger patch-size, where the clean signal is more recognisable

®* Given the LMA approach’s preference for clean external data, we
expect that the LMA extension will be more beneficial in the SR
framework



Experiments- Settings

® We performed tests on 4 test images at 4 noise levels.
Barbara c = 10 Boatc =25 Cameraman o =50 Parrots = 100

® For external approaches we used 2 generic datasets
— 5 natural |mages with varylng contents

TD2:




Experiments- Settings

® Sparse Representation (SR) - learned dictionaries of
256 8x8 patches

® Sparse Representation-LMA (SR-LMA) - learned
dictionaries from 7x7 to 21x21

® All results averaged over 3 instances of noise

® We tuned the upper and lower limits of the patch-sizes to
be searched

— Lower for low noise, higher for high noise
® h = o in all experiments



Experiments —
LMA Vs. Sparse Representation (External)

SIM of 3 approaches at 4 noise levels

an S

o SR LMA SR-LMA
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
10 33.81 | 09284 | 32.82 | 0.9132 | 33.95 | 0.9280
25 28.83 | 0.8345 | 28.46 | 0.8295 | 28.93 | 0.8382
50 |[[24.30 [ 06961 | 2483 [ 07174 | 24.76 | 0.7162
100 |[[19.76 | 0.5472 | 20.24 | 0.5781} | 20.05 | 0.5668




c =100

Experiments —
LMA Vs. Sparse Representation (External)

Table 1: PSNR an S

IM of 3 apro

LMA

y

SR-LMA

e levels

aches at 4 nois
o SR LMA SR-LMA
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
10 33.81 | 0.9284|| 32.82 | 09132 || 33.95 | 0.9280
25 28.83 | 0.8345]| 28.46 | 0.8295 || 28.93 | 0.8382
50 24.30 | 0.6961|| 2483 | 0.7174 || 24.776 | 0.7162
100 19.76 | 0.5472|| 20.24 | 0.5781 || 20.05 | 0.5668




Experiments —
LMA Vs. Sparse Representation (External)

3 approach

Table 1: PSR an SIM of elevels

es at 4 nois
o SR LMA SR-LMA
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
10 33.81 | 09284 | 32.82 | 09132 | 33.95 | 0.9280
25 28.83 | 0.8345 | 28.46 | 0.8295 | 28.93 | 0.8382
50 24.30 | 0.6961 8 17 ] !
100 || 19.76 | 0.5472 []20.24 | 0.5781 | 20.05 | 0.5668]




c =100

Experiments —
LMA Vs. Sparse Representation (External)

Table 1: PSNR an S

IM of 3 apro

LMA

y

SR-LMA

e levels

aches at 4 nois
o SR LMA SR-LMA
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
10 33.81 | 09284 | 32.82 | 09132 | 33.95 | 0.9280
25 28.83 | 0.8345 | 28.46 | 0.8295 | 2893 | 0.8382
50 24.30 | 0.6961 | 2483 | 0.7174 | 24776 | 0.7162
100 19.76 | 0.5472 | 20.24 | 0.5781 | 20.05 | 0.5668




Experiments —
LMA Vs. Sparse Representation (External)

Table 1: PSR an SIM of

3 aproach
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e levels

es at 4 nois
o SR LMA SR-LMA
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
10 33.81 | 09284 | 32.82 | 09132 | 33.95 | 0.9280
25 28.83 | 0.8345 | 2846 | 0.8295 | 28.93 | 0.8382
50 24.30 | 0.6961 | 2483 | 0.7174 | 24776 | 0.7162
100 19.76 | 0.5472 | 20.24 | 0.5781 | 20.05 | 0.5668




Experiments-
BM3D Vs. BM3D-LMA (Internal Results)

Table 2: PSNR and SSIM of 3 approaches at 3 noise levels

o Non-Local Means BM3D BM3D-LMA
PSNR SSIM PSNR | SSIM | PSNR | SSIM
10 || 33.37 0.9074 [33.99] | 0.9370 |L34.60] | 0.9370
25 28.85 0.8099 |129.72] | 0.8642 [1.29.90] | 0.8612
50 || 24.30 0.7038 26.02 | 0.7575 | 25.68 | 0.7578




Experiments-

Single Noisy Inputs (Internal Results)
Table 2: PSNR and SSIM of 3 approaches at 3 noise levels

o Non-Local Means BM3D BM3D-LMA
PSNR SSIM PSNR | SSIM | PSNR | SSIM
10 || 33.37 0.9074 33.99 | 09370 | 34.60 | 0.9370
25 || 28.85 0.8099 29.72 | 0.8642 | 29.90 | 0.8612
50 || 24.30 0.7038 26.02 | 0.7575 | 25.68 | 0.7578
BM3D BM3D-LMA

c=25




Summary

® A Largest Matching Area (LMA) approach to image denoising, jointly
optimising the quality and size of matching patches

— Also LMA extensions to two existing approaches

® In external denoising our approach improves reconstructed accuracy
— Particularly at high noise levels and in uniform regions
® Our internal denoising extension produced competitive results

— Because LMA prefers clean external data, the lack of clear
Improvement is unsurprising

® Targeted external data is a promising avenue for future research

— Techniques exploiting generic external datasets are approaching
performance limits

— A small targeted dataset can reduce computational complexity



