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Project Summary

The methods behind graph signal processing (GSP) have a wide range of applications, and offer
benefits in multiple research areas. In our paper, we aim to connect graph signal processing
with nueorscience and biological communities. In neuroscience, different studies on brain activity
patterns and functional brain networks have led to the identification of neurological diseases and
behavioral traits [1]. Considering that the individual study of signals and networks have similar
focus problems, we advocate an intermediate path in which we interpret brain activity as a signal
supported on the graph of brain connectivity. GSP tools can therefore be used to glean information
from brain signals using the network as an aid to identify patterns of interest.
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Figure 1: (A) Brain network representation using average functional coherence values. (B) Brain graph
signal using regional fMRI data for each time point t.

Motivation

Although all faculty members wish to see undergraduate students incorporated into high level re-
search, the minimal conceptual background that these students start with is a large hindrance in
achieving this goal. Projects which involve too many unfamiliar concepts make it difficult to (i)
spark interest in undergraduate students and (ii) allow students the ability to explore, connect
concepts, and extract results independently, with little supervision. For students interested in data
sciences, they have to grapple with the concept of transforming data into information, typically
through finding an alternative representation for the data. This is a formidable task, as it is not
always easy to find suitable representations [2]. Students who have taken introductory classes in
signal processing can begin to understand fundamental transforms, such as the DFT, multidimen-
sional DFT and PCA, and thus can pursue research in these areas. It is our hope, though, to
extend this understanding and likewise extend these students’ scope of research. The graph Fourier
transform (GFT) is an umbrella for signal processing concepts, and also encompasses all other
relationships between elements of signals [3,4]. Therefore, in an attempt to incorporate undergrad-
uates into research, we present to them the connection between GSP and signal processing, and
consequently provide a platform where students have suitable background for autonomous research
in a much broader area.

The project presented here introduces GSP techniques to a neuroscience application. In design-
ing an application based project, especially in neurscience, we are incorporating GSP theory with
tangible, observation-based results. Therefore, our project is appealing to multiple communities, in
addition to undergraduates with little background in research, since the student can learn through
observations. Our focus for this research is analyzing human learning through subject performance
in a simple visual-motor task. We present notions of the GFT and graph filters to decompose a
given subject’s brain signal into sections that represent different modes of variability. This type of
analysis enforces the student’s understanding of graph frequency by challenging them to apply the
concept to a different domain, being the variability across brain regions, a type of spatial analysis.
Exploration of this concept offers the student autonomy in exploring different frequency levels,
temporal variability and the underlying network.
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Methods

We collected fMRI data from two separate experiments during which subjects were tasked with
responding to visual cues by pressing down on a corresponding response box. The experiments
tracked how fast the subjects responded to these cues over a set training period. Figure 1 A shows
that given nodes at different brain regions, we can take the collected fMRI signal and create an
average connectivity network representing regional coherence. Figure 1 B illustrates how we can
view our graph signal as the vector of fMRI values at each node for an individual time point t.
From the collected fMRI brain signal and the calculated brain network, we used graph low pass,
band pass, and high pass filters, respectively, to decompose the signal into low (xL), middle (xM)
and high (xH) frequency components, such that our original signal x = xL + xM + xH. This gives
the notion that xL represents parts of the signal which vary slowly over the brain regions, whereas
xH represent parts of the signal which change rapidly.

Notable Highlights

The methods described above and results we present here have recently been accepted for publica-
tion [5].

Decomposed Graph Signals

A visualization of the energy of the decomposed signals, ‖xL‖2, ‖xM‖2, and ‖xH‖2, in Figure 2 shows
that even though we normalize the brain signals, therefore expecting to see similar distributions
across brain regions, the signals xL and xH clearly possess the majority of the energy, whereas xM

possesses very few regions that pass the applied thresholding. The brain combines some degree
of disorganized behavior with regularity, and when these coexist, the complexity of the system is
high [6]. This gives the notion that when forming systems in the brain, signals varying smoothly
across the brain (regular behavior) and rapidly across the brain (disorganized behavior) are favored.

Figure 2: Example distribution of decomposed signals across all brain regions for first experiment. Average
energy with respect to (a) xL (b) xM and (c) xH. A thresholding is applied.

Association with Learning

The most interesting point is to find how these decomposed signals relate to subjects’ performances
when learning a task. For each training point, we evaluated learning rates for all participants
based on their change in time to complete a given visual sequence. We then calculated the Pearson
correlation between a subject’s decomposed signal and learning rate, respectively (i.e. ‖xL‖ vs
learning rate), for each training session. Figure 3 plots these correlation coefficients for all training
points. We found that for xL corresponding to smooth spatial variation, its correlation with learning
is positive at the start of training, and gradually decreases to become negative at the end of
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the experiment when individuals are highly familiar with the sequence. The exact opposite is
observed for xH corresponding to rapid spatial variation. Its correlation with learning is negative
at the start of training, and gradually increases until it is positive at the end of the experiment.
For xM, no significant trend between correlation and training intensity is observed. This result
implies that the most association with learning comes from the brain signals that either vary
smoothly (xL, regularity) or rapidly (xH, randomness) with respect to the brain network. Therefore,
graph frequency decomposition could be used to capture more informative brain signals by filtering
out non-informative counterparts, most likely associated with middle graph frequencies. From a
neuroscience perspective, we observe that when faced with an unfamiliar task, smooth, spread,
and cooperative signals are favored. As we become more familiar with a task, these become less
important, and in fact, when we have high task familiarity, we favor varied, spiking, and competitive
signals.

Figure 3: Scatter plots from first experiment depicting the level of task familiarity and R values, defined here
as correlations between learning rate parameters and the norm of the decomposed signal (i.e. Pink points on
Left: xL, Red points in Middle: xM, and Maroon points on Right: xH). Top row: number of trials described
in linear scale. Bottom row: number of trials evaluated in logarithm scale.
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