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PROBLEM STATEMENT

Gailt as biometric trait:
 Pros: Acquired from a distance

« Cons: Not as reliable as face, iris, fingerprint, etc.
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PROBLEM STATEMENT

Factors hinder the performance of gait recognition

algorithms:

e age, clothes, walking surfaces, viewing angles, health

condition, segmentation error
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THE BASELINE ALGORITHM
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SILHOUETTE EXTRACTION
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GAIT PERIOD DETECTION
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SIMILARITY COMPUTATION

« Similarity Score Sim(P;, G;) between probe P; and the full

gallery set {G4, ..., G, }: (s.d. Is the standard deviation)

Sim(P;, G;) — Mean;Sim(P;, G;)
s.d.; Sim(P;, G;)

Sim(P;, G;) =
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DEMO: BACKGROUND SUBTRACTION
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DEMO: BACKGROUND SUBTRACTION




DEMO: SEGMENTATION ERROR

WARWICK



METHODOLOGY

Template: Gait Energy Image (GEI)

Singularity: Principle Component Analysis

Discriminant Learning Method: Local Fisher Discriminant
Analysis (LFDA)

« Least Square QR Decomposition Based Feature Fusion
(LSQR Fusion) + Voting
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GEl

« A representation model containing spatial-temporal
Information for one gait cycle.

Cc
=13
k=1

e (G refersto GEl, I, Is the kth silhouette image, where the
total number of silhouettes in one gait cycle is denoted
as c.

« Reform GEI data matrix into G vector x, as the input of
discriminant learning.
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LFDA

 Local within-class and between-class scatter matrices:
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LSQR FUSION

» Calculate weight: arg min,, ||G * w' — p|]

* The dimension of gallery feature matrix ¢ and probe
feature vector p are very small after dimension reduction
and subspace learning, thus avoid the computational
cost issue during the iteration computation of weight set
W.

- Gallery feature fusion: G = X.;1 g; * w;
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LSQR FUSION

Gallery Hyperplane G
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MAJORITY VOTING

« Assume probe set X = {x4, ..., x,,}. For each subject from
probe set x;,i € {1, ...,n}, there will be p outcomes from p
classifiers. Denote m; as the count of output label j,

assign x; = lj if n;j = max(M),

M = {my,..,m,}.
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EXPERIMENT DESIGN
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DATASET PREPARATION

CASIA Dataset B: 124 subjects, 62 for training and 62
for testing.

Each subject has 6 gait sequences, 1-4 is considered as
gallery set and 5-6 as probe set.

Frame size: 240*320: Normalised silhouette size:
128*88.

Only normal gait sequences are chosen
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DATASET PREPARATION

Quality Segmentation Approach

Q.1 Approach 1: BS with Otsu’s threshold

Q.2 Approach 2: Normalised BS plus dilation & erosion
Q.3 Approach 3: BS with small threshold (1/3 of Otsu’s)
Q4 Approach 4: FD plus dilation & erosion

Q.5 Approach 5: GMM & EM method

Q.6 Approach 6: LMedS method
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RESULT AND ANALYSIS

Recognition without discriminant learning Recognition after applying LFDA
P P

N Q1 Q2 Q3 Q4 Q5 Q6 N Q1 Q2 Q3 Q4 Q5 Q6
Q.1 85 12 7 10 80 70 Q.1 95 75 63.3 20 93.3 95
Q.2 12 67 17 8 10 35 Q.2 85 85 83.3 30 783  91.7
17 15 78 5 17 8 Q.3 68.3 75 95 333 667 81.7
15 8 5 33 18 15 Q4 483 467 70 617 567 683
. 83 12 7 13 8 63 Q.5 95 75 567 217 95 967
Q.6 58 25 5 10 43 97 Q.6 883 667 65 233 85 100

Comparison between methods

Probe
Alg. Q.1 Q.2 Q.3 Q4 Q.5 Q.6 Avg.

DL-A 80 706 722 31.7 76.3 87 68.3
DL-H 95 85 95 61.7 95 100  88.6
FDL-S 90 783 833 33.3 88.3 96.7 78.3

FDL 95 85 90 58.3 95 98.3  86.9
FDL-I 95 767 733 23.3 93.3 95 76.1

G: Gallery data; P: Probe data; Q.1:Q.6: gait data under different quality levels;
LDA: gait data after LDA learning; LDAF: gait data after LDA learning and fusion.
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CONCLUSION

« Gait recognition is indeed affected if the quality of the
probe data set differs from that of the gallery data set.

« Important improvements in matching rate may be
attained when subspace learning methods are used,
since the feature subspace finds the best projection to
match probe with gallery features of the same quality
level.

 The LSQR based fusion can further improve matching
rates.
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