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• Person Re-identification
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Person Re-identification (ReID)



Non-overlapping Camera Views 

Irrelevant negative samples, difficult to train 
classifiers
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Difficulty



View/Pose Changes

Introduction Motivation    The SVR Alg.   Experiments Summary & Future Work

Difficulty



Occlusions

Carried objects occlude the person appearance
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Difficulty



Illumination Changes

Need illumination-invariant features or light-
amending process
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Difficulty



Large Intra-class Variations & Limited Samples 
for Learning

Difficulty
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Difficulty



Finding Correspondence by Segmentation
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Motivation

• A pose-invariant feature is important in 
representation of similarity of images in different 
views.

• Same features in different views usually located in 
adjacent area.

• Transformation learning is also important to 
person re-identification.



• Feature Extraction – dColorSIFT*

• Feature Expression – Dense Invariant Feature (DIF)

• Similarity Evaluation – Support Vector Ranking (SVR)

Feature 
Extraction
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Flowchart of the Alg.

*R. Zhao, W. Ouyang, and X. Wang, “Unsupervised salience learning for
person re-identification,” in CVPR, 2013, pp. 3586–3593
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The Dense Invariant Feature

Densely-sample the images into patches.

Find the most similar patch of each patch of an 
image in the surrounding area of the other image 

of a pair.

Assemble the largest similarity of each patch into 
a feature for a pair of images.
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The Dense Invariant Feature

Forward DIF
Form a feature by finding the most similar 

patches from an image of view B  for an image 
of view A.

Backward DIF
Form a feature by finding the most similar 

patches from images of view A  for images of 
view B.



Introduction Motivation The SVR Alg. Experiments Summary & Future Work

The SVR Algorithm*

SVM

SVR

*T. Joachims, “Optimizing search engines using clickthrough data,” in 
KDD, 2002, pp. 133–142.
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Feature-Fusion for Ranking

Forward DIF: Backward DIF:

i means image of person No. i of view A and j means image of person No. j of view B

 Feature Fusion: Project Backward DIF with a vector P to the space of Forward DIF 
and merge them into a new feature. 

 The ranking objectives: Learning the projection P and a linear weight vector ω to 
make the best ranking of training data.

 Ranking objective function:



• Datasets

• Basic Feature

Densely sampled (with the size of 10 ╳ 10 and

an overlap of 6 ╳ 6) dColorSIFT

Dataset # views # persons # images Image size

VIPeR 2 632 1264 128 ╳ 48

CAMPUS 2 971 3884 160 ╳ 60
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Experiment



• Results

Introduction Motivation The SVR Alg.    Experiments Summary & Future Work

Experiment

*DSVR_SA: Our ranking method with a single forward DIF.
*DSVR_FA: Our ranking method with the fused feature.



• Results
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Experiment

*DSVR_SA: Our ranking method with a single forward DIF.
*DSVR_FA: Our ranking method with the fused feature.
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Thank-You.


