

DISCRIMINATIVE AUTOENCODER

Angshuman Paul¹, Angshul Majumdar², Dipti Prasad Mukherjee¹

¹Indian Statistical Institute, Kolkata, India, ²Indraprastha Institute of Information Technology, Delhi, India

1. Introduction

- Discriminative AE: encoder map with discriminative features
- Cross dataset experiments: Training with dataset A testing with similar dataset B
- Useful in problems with weakly labelled data (e.g. in medical imaging)

2. Design Goal

3. Design Considerations

- Use of class labels: supervised method
- Encoder map: need to be discriminative
- Decoder output: same as input to the autoencoder
- Fast approach to find encoder and decoder weights

4. AE Objective Function

- Input feature vectors \boldsymbol{X} ; Encoded feature vectors \boldsymbol{Z}
- Encoder weight W; Decoder weight W'
- Activation function ϕ
- AE objective function:

$$J = ||X - W'Z||_F^2 = ||X - W'\phi(WX)||_F^2$$

5. Discriminative AE

- Addition of regularization terms
- Z_i : encoded feature vectors of class i with cluster centre \overline{Z}_i
- First regularization term: minimizes the radius of a cluster in the encoded feature space: $J_1 = \lambda_1 \sum_{i=1}^C \|Z_i \overline{Z}_i\|_F^2$
- Second regularization term: maximizes the inter-cluster distances between the clusters corresponding to different classes: $J_2 = -\lambda_2 \sum_{i=1}^C \sum_{j \neq i} \| \overline{Z}_i \overline{Z}_j \|_F^2$
- Objective function of DAE:

$$J_{DAE} = \|X - W'Z\|_F^2 + \lambda_1 \sum_{i=1}^C \|Z_i - \overline{Z}_i\|_F^2 - \lambda_2 \sum_{i=1}^C \sum_{j \neq i} \|\overline{Z}_i - \overline{Z}_j\|_F^2$$

6. Minimization of the Objective Function

- ADMM for minimization of J_{DAE} by dividing into sub-problems:
- P1: $\underbrace{argmin}_{W_f} ||X W'Z||_F^2$
- P2: $\underbrace{argmin}_{Z_i} ||X W'Z||_F^2 + \lambda_1 \sum_{i=1}^C ||Z_i \overline{Z_i}||_F^2 \lambda_2 \sum_{i=1}^C \sum_{j \neq i} ||\overline{Z_i} \overline{Z_j}||_F^2$
- P3: $\underbrace{argmin}_{W} \|Z \phi(WX)\|_F^2$

7. Experiments

- Datasets: MNIST, variants of MNIST, USPS, CIFAR 10, SVHN
- Parameters λ_1 and λ_2 : tuned using 5-fold cross-validations
- Competing approaches: SSA [1], DBN [2], LC2 [3], SE [4]
- Cluster separability index: better clusters in the encoded feature space
- Improvement with iterations during training

8. Classification Results

Classification by random forest using encoded features

Dataset	SSA	DBN	LC2	SE	Proposed
MNIST	96.82	96.7	94.6	95.68	97.12
MNIST-R	86.86	85.2	85.68	83.44	88.54
MNIST-RB	52.71	56.2	54.43	49.82	51.9
USPS	95.12	94.82	91.34	87.24	95.44
CIFAR – 10	31.48	28.72	27.06	22.82	32.28
SVHN	27.21	30.8	30.64	26.27	33.1

9. Cross-Dataset Experiments

- Breast cancer datasets: training using MITOS-ATYPIA [5] and test on MITOS [6] and AMIDA [7]
- Feature extraction using [8], encoding using different methods, classification using random forest

Dataset	SSA	DBN	LC2	SE	Proposed
MITOS	59.2	67.8	61.3	67.2	75.3
AMIDA	51.4	61.2	60.7	59.5	66.2

10. Conclusions

- Discriminative features using autoencoder
- Fast due to use of ADMM for minimization of J_{DAE}
- Useful for cross-dataset experiments
- Outperforms state-of-the-art competitors

References

- 1. ICONIP, 2016, pp. 82–89
- 2. arXiv:1408.3264, 2014
- . CVPR. IEEE, 2011, pp. 1697–1704
- 4. Science, vol. 313, no. 5786, pp. 504–507, 2006.
- . IPAL, Agency Sci., Technol. & Res. Inst. Infocom Res., Singapore, Tech. Rep 1, 2014
- 6. Journal of pathology informatics 4, 2013.
- . Medical image analysis 20.1, pp. 237–248, 2015.
- 8. ICVGIP. ACM, 2016, p. 1.