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Motivation

• An autonomous system need perception to navigate through scenes and recognize objects in
real environments 1.

• The capability of detecting abnormal situations based on self-awareness is an important task
that allows autonomous systems to increase their situational awareness and the e�ectiveness
of the decision making submodules 2.

1D. Ramík, C. Sabourin, R. Moreno, and K. Madani, “A machine learning based intelligent vision system for autonomous
object detection and recognition,” Applied Intelligence, vol. 40, no. 2, pp. 358–375, 2014

2V. Bastani, L. Marcenaro, and C. S. Regazzoni, “Online nonparametric bayesian activity mining and analysis from
surveillance video,” IEEE Transactions on Image Processing, vol. 25, pp. 2089–2102, May 2016
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Objectives

• We focus on multi-sensor anomaly detection for moving cognitive agents using both external
and private first-person visual observations.

• The observation types are used to characterize agents motion in a given environment.

• The proposed method provides two levels:
i) A Shared Level (SL) self-awareness from external viewpoint.
ii) A Private level (PL) self-awareness from first person viewpoint.
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Problem definition
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Shared Level of self-awareness
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Representation of observed dynamic motion

• Sparse positions represents the Locations of the entity take from input video or sensor.
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Representation of observed dynamic motion: Gaussian Process approach

• It is proposed to use a GP approach 3, such that:
˜̇X = g(X̃) + v, (1)

Where ˜̇X represents an estimation of velocity, g(·) takes location information and estimates
the expected motion (action) at such position for a given activity.

3K. Kim, D. Lee, and I. Essa, “Gaussian process regression flow for analysis of motion trajectories,” pp. 1164–1171, 2011
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Representation of observed dynamic motion: Superpixel algorithm

• Using a superpixel algorithm4 to discretize the image plane into N zones:
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• Linear dynamic model:
Xk+1 = Xk + ∆kUn,k + wm, (2)

where Un,k = [ẋn, ẏn]T , is a control input that encodes the action (motivation) of the agent.
4Z. Li and J. Chen, “Superpixel segmentation using linear spectral clustering,” in 2015 IEEE Conference on Computer

Vision and Pa�ern Recognition (CVPR), pp. 1356–1363, June 2015
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Abnormality detection: Kalman filter method

• Building a set of Kalman Filters (KFs) based on the built dynamical models given the N zones.

• KFs’ innovations can be used to express abnormalities since they quantify the deviations from
normal learned models in the environment:

εk,n = Zk − X̂n
k|k−1, (3)

where εk,n is the innovation generated in the zone n where the agent is located. Zk represents
observed spatial data and X̂n

k|k−1 is the KF estimation of the agent’s location at the future
time k calculated in the time instant k − 1 (2).

• Innovation vectors are composed of two components, the magnitude of those vectors can be
considered as a final measure of abnormality, ξ:

ξk = ||εk,n||2,
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Private Layer of self-awareness
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Learning the normal pa�ern of the observed scene

• Two networks (GANs5) structure are used to learn the normal pa�ern of the observed scene.
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5I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative
adversarial nets,” in Advances in Neural Information Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, eds.), pp. 2672–2680, Curran Associates, Inc., 2014
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Learning the normal pa�ern of the observed scene

• Frames (F) and corresponding optical-flow images (O) are collected from the normal scenario.
• Constructing a Bank of Discriminators on the GP identified zones grouping into two sets:

i) Set1: which is trained on a straight path.
ii) Set2: that is trained over the curves.
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Anomaly detection by using discriminators of GANs

1- Given a test frame F and its corresponding optical-flow image O, we first produce the recon-
structed pO and pF using GF→O and GO→F , respectively.

2- The pairs of patch-based discriminators D̂F→O and D̂O→F are applied respectively to the first
and second tasks.
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Anomaly detection by using discriminators of GANs

3- Computing scores for the ground truth: SO and SF , and the prediction: SpO and SpF .
4- Define abnormality as innovation w.r.t the Discriminators scores:

i) The two scores are summed: Sobservation = SO + SF and Sprediction = SpO + SpF

ii) Innovation: Ỹ = Sobservation − Sprediction
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Results
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Experimental setup

Proposed approach is validated with data acquired from a real vehicle ’iCab’ during a perimeter
monitoring task.
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Shared Level Self Awareness abnormality detection

SL anomaly measurements: perimeter control activity by GP through time with avoidance of
static pedestrians.
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Private Level Self Awareness abnormality detection

PL anomaly measurements: the distances between the observations and predictions by GANs
during the time.
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Private Level Self Awareness abnormality detection

Visualization of local abnormality in first-person vision
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Conclusions
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Conclusions

• Self-awareness in autonomous system

• Shared and private layers for self-awareness

• Methodology based on multi-perspective approach to detect anomalies for moving agents

• SL and PL learned models are used to predict the dynamics of a vehicle performing a task
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Thank you!
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