A MULTI-PERSPECTIVE APPROACH TO ANOMALY DETECTION FOR SELF-AWARE EMBODIED AGENTS

M. Baydoun^{1,2}, M. Ravanbakhsh¹, D. Campo¹, P. Marin³, D. Martin³, <u>L. Marcenaro</u>¹, A. Cavallaro², C. Regazzoni^{1,3} 43rd IEEE International Conference on Acoustics, Speech and Signal Processing April 15-20 2018, Calgary, Alberta, Canada Tuesday 17th April, 2018

1

¹DITEN, University of Genoa, Italy.
²CIS, Queen Mary University of London, UK.
³Carlos III University of Madrid, Spain.

Outline

Introduction

Shared Level of self-awareness

Representation of observed dynamic motion

Abnormality detection by using Kalman filter method

Private Layer of self-awareness

Learning the normal pattern of the observed scene

Anomaly detection by using discriminators of GANs

Results

Shared Level abnormality detection

Private Level abnormality detection

Conclusions

Introduction

Generic self-awareness scheme

- An autonomous system need perception to navigate through scenes and recognize objects in real environments ¹.
- The capability of detecting abnormal situations based on self-awareness is an important task that allows autonomous systems to increase their situational awareness and the effectiveness of the decision making submodules ².

¹D. Ramík, C. Sabourin, R. Moreno, and K. Madani, "A machine learning based intelligent vision system for autonomous object detection and recognition," *Applied Intelligence*, vol. 40, no. 2, pp. 358–375, 2014

²V. Bastani, L. Marcenaro, and C. S. Regazzoni, "Online nonparametric bayesian activity mining and analysis from surveillance video," *IEEE Transactions on Image Processing*, vol. 25, pp. 2089–2102, May 2016

- We focus on multi-sensor anomaly detection for moving cognitive agents using both external and private first-person visual observations.
- The observation types are used to characterize agents motion in a given environment.
- The proposed method provides two levels:
 - i) A Shared Level (SL) self-awareness from external viewpoint.
 - ii) A Private level (PL) self-awareness from first person viewpoint.

Problem definition

Task is perimeter monitoring by doing turn inside the environment

Normal situation SL PL

Abnormal situation

PL

Shared Level of self-awareness

• Sparse positions represents the Locations of the entity take from input video or sensor.

Representation of observed dynamic motion: Gaussian Process approach

• It is proposed to use a GP approach ³, such that:

$$\tilde{\dot{X}} = g(\tilde{X}) + \nu, \tag{1}$$

Where \dot{X} represents an estimation of velocity, $g(\cdot)$ takes location information and estimates the expected motion (action) at such position for a given activity.

³K. Kim, D. Lee, and I. Essa, "Gaussian process regression flow for analysis of motion trajectories," pp. 1164-1171, 2011

Representation of observed dynamic motion: Superpixel algorithm

• Using a superpixel algorithm⁴ to discretize the image plane into N zones:

• Linear dynamic model:

$$X_{k+1} = X_k + \Delta k U_{n,k} + w_m, \tag{2}$$

where $U_{n,k} = [\dot{x}_n, \dot{y}_n]^T$, is a control input that encodes the action (motivation) of the agent.

⁴Z. Li and J. Chen, "Superpixel segmentation using linear spectral clustering," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1356–1363, June 2015

Abnormality detection: Kalman filter method

- Building a set of Kalman Filters (KFs) based on the built dynamical models given the *N* zones.
- KFs' innovations can be used to express abnormalities since they quantify the deviations from normal learned models in the environment:

$$\epsilon_{k,n} = Z_k - \hat{X}_{k|k-1}^n,\tag{3}$$

where $\epsilon_{k,n}$ is the innovation generated in the zone *n* where the agent is located. Z_k represents observed spatial data and $\hat{X}_{k|k-1}^n$ is the KF estimation of the agent's location at the future time *k* calculated in the time instant k - 1 (2).

• Innovation vectors are composed of two components, the magnitude of those vectors can be considered as a final measure of abnormality, ξ :

$$\xi_k = ||\epsilon_{k,n}||_2$$

Private Layer of self-awareness

Learning the normal pattern of the observed scene

• Two networks (GANs⁵) structure are used to learn the normal pattern of the observed scene.

Learning the normal pattern of the observed scene

- Frames (F) and corresponding optical-flow images (O) are collected from the *normal* scenario.
- Constructing a *Bank of Discriminators* on the GP identified zones grouping into two sets: *i*) *Set*1: which is trained on a straight path.
 - *ii*) *Set*2: that is trained over the curves.

Anomaly detection by using discriminators of GANs

- 1- Given a test frame *F* and its corresponding optical-flow image *O*, we first produce the reconstructed p_O and p_F using $G^{F \to O}$ and $G^{O \to F}$, respectively.
- 2- The pairs of patch-based discriminators $\hat{D}^{F \to O}$ and $\hat{D}^{O \to F}$ are applied respectively to the first and second tasks.

Anomaly detection by using discriminators of GANs

- 3- Computing scores for the ground truth: S^O and S^F , and the prediction: S^{p_O} and S^{p_F} .
- 4- Define abnormality as innovation w.r.t the Discriminators scores:
 - *i*) The two scores are summed: $S_{observation} = S^O + S^F$ and $S_{prediction} = S^{p_O} + S^{p_F}$ *ii*) Innovation: $\tilde{Y} = S_{observation} - S_{prediction}$

Results

Experimental setup

Proposed approach is validated with data acquired from a real vehicle 'iCab' during a perimeter monitoring task.

Pedestrian avoidance from 'iCab' on board camera

SL anomaly measurements: perimeter control activity by GP through time with avoidance of static pedestrians.

PL anomaly measurements: the distances between the observations and predictions by GANs during the time.

Visualization of local abnormality in first-person vision

Conclusions

- · Self-awareness in autonomous system
- · Shared and private layers for self-awareness
- · Methodology based on multi-perspective approach to detect anomalies for moving agents
- SL and PL learned models are used to predict the dynamics of a vehicle performing a task

Thank you!

- D. Ramík, C. Sabourin, R. Moreno, and K. Madani, "A machine learning based intelligent vision system for autonomous object detection and recognition," *Applied Intelligence*, vol. 40, no. 2, pp. 358–375, 2014.
- V. Bastani, L. Marcenaro, and C. S. Regazzoni, "Online nonparametric bayesian activity mining and analysis from surveillance video," *IEEE Transactions on Image Processing*, vol. 25, pp. 2089–2102, May 2016.
- K. Kim, D. Lee, and I. Essa, "Gaussian process regression flow for analysis of motion trajectories," pp. 1164–1171, 2011.
- Z. Li and J. Chen, "Superpixel segmentation using linear spectral clustering," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1356–1363, June 2015.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," in *Advances in Neural Information Processing Systems 27* (Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds.), pp. 2672–2680, Curran Associates, Inc., 2014.