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Multivariate Bounded Generalized Gaussian
Mixture Model

The data X = (~X1, ...,~XN), with a mixture of K
distributions can be modeled as :

p(X |Θ) =
N

∏
i=1

K

∑
j=1

p(~Xi|~µj,~σj,~λj)pj (1)

Where Θ represents the parameters of mixture model
having K classes as Θ = (ξ1, ξ2, ξ3, ξ4), with
ξ1 = (~µ1, ...,~µK), ξ2 = (~σ1, ...,~σK), ξ3 = (~λ1, ...,~λK) and
ξ4 = (p1, ..., pK).

The term p(~X|~µj,~σj,~λj) represents the bounded
generalized Gaussian distribution (BGGD).

p(~X|~µj,~σj,~λj) =
f (~X|~µj,~σj,~λj)H(~X|Ωj)∫

∂Ωj
f (X|~µj,~σj,~λj)dX

(2)
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Where

H(~X|Ωj) =

{
1 if ~X ∈ ∂Ωj

0 otherwise
(3)

and f (~X|~µj,~σj,~λj)=
D

∏
d=1

B(λjd) exp
(
−A(λjd)

∣∣∣Xd − µjd

σjd

∣∣∣λjd
)

(4)

with

B(λjd)=
λjd

√
Γ(3/λjd)

2σjdΓ(1/λjd)
√

Γ(1/λjd)
and A(λjd)=

[
Γ(3/λjd)

Γ(1/λjd)

]λjd/2

(5)
where Γ(.) is the gamma function and ~µ = (µ1, ..., µD),
~σ = (σ1, ..., σD), and~λ = (λ1, ..., λD) are the mean,
standard deviation and shape parameters respectively.
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Bounded Generalized Gaussian Mixture Model
with ICA

For the ICA mixture model, each D-dimensional data
vector ~Xi = (Xi1, ..., XiD) can be represented as:

~Xi = Aj~sj,i +~bj (6)

where Aj is L×D basis matrix,~sj,i is D-dimensional
source vector and~bj is an L-dimensional bias vector for a
particular mixture j. For the simplicity, number of linear
combinations (L) is considered to be equal to the number
of sources (D) for each observation of the dataset.
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Bounded Generalized Gaussian Mixture Model
with ICA

The complete data likelihood is given below.

p(X , Z|Θ) =
N

∏
i=1

K

∑
j=1

(
p(~Xi|~µj,~σj,~λj)pj

)Zij
(7)

The log-likelihood function is given below.

L(X , Z|Θ) =
N

∑
i=1

K

∑
j=1

Zij log
(

p(~Xi|~µj,~σj,~λj)pj

)
(8)

where Zij is the posterior probability and can be written as:

Zij = p(j|~Xi) =
p(~Xi|~µj,~σj,~λj)pj

∑K
j=1 p(~Xi|~µj,~σj,~λj)pj

(9)

and Z = {~Z1, ...,~ZN}.
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Parameter Estimation: Maximization of the
log-likelihood

Prior Probability

p̂j =
1
N

N

∑
i=1

p(j|~Xi) (10)

Mean

µ̂jd =
∑N

i=1 p(j|~Xi)(
∣∣Xid − µjd

∣∣λjd−2Xid + Tjd)

∑N
i=1 p(j|~Xi)

∣∣Xid − µjd
∣∣λjd−2 (11)

where

Tjd =

∑M
m=1 sign(µjd − sjmd)

∣∣µjd − sjmd

∣∣λjd−1H(sjmd|Ωj)

∑M
m=1 H(sjmd|Ωj)

(12)
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Parameter Estimation: Maximization of the
log-likelihood

Standard Deviation

σ̂jd =

(
λjdA(λjd)∑N

i=1 p(j|~Xi)
∣∣Xid − µjd

∣∣λjd

∑N
i=1 p(j|~Xi)(1 + Qjd)

)1/λjd

(13)

where

Qjd =

∑M
m=1(−1 + λjdA(λjd)

∣∣smjd − µjd
∣∣λjd (σjd)

−λjd )H(smjd|Ωj)

∑M
m=1 H(smjd|Ωj)

(14)

with i = 1, ..., N, j = 1, ..., K, d = 1, ..., D and
m = 1, ..., M.
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Parameter Estimation: Standard ICA Model

The gradient of log-likelihood for the parameters of each
class is given below.

∇θjL(X , Z|Θ) =
N

∑
i=1

Zij

(
∇θj log p(~Xi|~µj,~σj,~λj) +∇θj log pj

)
(15)

The ∇θj represent gradient with respect to basis function,
bias vector and shape parameter.

The standard ICA model is used for the log-likelihood as
follows:

log p(~Xi|~µj,~σj,~λj) = log
p(~sj,i)∣∣detAj

∣∣ (16)
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Bounded Generalized Gaussian Mixture Model
with ICA

The gradient ascent is used to estimate the shape parameter
by maximizing the log-likelihood and represented as:

∇~λj
log[p(X |Θ)] =

N

∑
i=1

p(j|~Xi)∇~λj
log p(~Xi|~µj,~σj,~λj) (17)

The gradient ascent is used for the adaptation, with the
gradient of the component density with respect to shape
parameter vector~λj for each component of the mixture
model.

∆~λj ∝ p(j|~Xi)
∂

∂~λj
log p(~Xi|~µj,~σj,~λj) (18)

∂

∂~λj
log p(~Xi|~µj,~σj,~λj) = ~λj[I− 2 tanh(~sj,i)~sT

j,i] (19)

By combining Eqs. (18) and (19), we get:

∆~λj ∝ p(j|~Xi)~λj[I− 2 tanh(~sj,i)~sT
j,i] (20)
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Bounded Generalized Gaussian Mixture Model
with ICA

An estimate of the shape parameter using gradient ascent is
as follows:

λ̂j = ~λj + α(p(j|~Xi)~λj[I− 2 tanh(~sj,i)~sT
j,i]) (21)

where the source is represented as:~sj,i = A−1
j (~Xi −~bj).

The adaptation of basis functions for each class is
performed by maximizing the log-likelihood with respect
to basis functions Aj for each component of mixture model.

∇Aj log[p(X |Θ)] =
N

∑
i=1

p(j|~Xi)∇Aj log p(~Xi|~µj,~σj,~λj) (22)

The adaptation performed by the gradient ascent with
respect to the basis functions is given as:

∆Aj ∝ p(j|~Xi)
∂

∂Aj
log p(~Xi|~µj,~σj,~λj) (23)
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Bounded Generalized Gaussian Mixture Model
with ICA

By using the standard ICA model for log-likelihood, we
get:

∆Aj ∝ p(j|~Xi)Aj[I− 2 tanh(~sj,i)~sT
j,i] (24)

The bias vector ~bj is estimated using an approximate
method as below:

~bj =
∑N

i=1 ~Xip(j|~Xi)

∑N
i=1 p(j|~Xi)

(25)

In the adaptation of the shape parameter, basis functions
and bias vector, the gradient of the component of the
mixture model is weighted by p(j|~Xi).
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Model Learning with BGGMM using ICA

1: Input:Dataset X = {~X1 , . . . ,~XN}, tmin .
2: Output: ξ1 , ξ2 ,ξ3 , and ξ4 .
3: {Initialization}: K-Means Algorithm. Set ξ3 = 2.
4: while relative change in log-likelihood ≥ tmin do
5: {[E Step]}:
6: for all 1 ≤ j ≤ K do
7: Compute p(~Xi |~µj ,~σj ,~λj) for i = 1, . . . , N.

8: Compute p(j|~Xi) for i = 1, . . . , N.
9: end for
10: {[M step]}:
11: for all 1 ≤ j ≤ K do
12: start ICA Algorithm
13: Update the basis functions Aj .

14: Update the bias vector~bj .

15: Update shape parameter~λj .

16: end ICA
17: Update the mixing parameter pj .

18: Update the mean ~µj .

19: Update standard deviation~σj .

20: end for
21: end while
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