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Why graph learning?

Learning time-varying graphs Gaussian Markov chain graph estimation

We consider the problem of inferring the hidden structure of
high-dimensional time-varying data. We aim at capturing the
dynamic relationships by representing data as valued nodes in
a sequence of graphs. Our approach is motivated by the ob-
servation that imposing a meaningful graph topology can help
solving the generally ill-posed and challenging problem of struc-
ture inference.

We introduce a new prior that asserts that the graph edges
change smoothly in time. We propose a primal-dual optimiza-
tion algorithm that scales linearly with the number of allowed
edges and can be easily parallelized. Our new algorithm is shown
to outperform standard graph learning and other baseline meth-
ods both on a synthetic and a real dataset.

Background

Smooth signals on a graph. Data matrix X € RY*? con-
taining columns x; as time samples of graph signals. Smooth-
ness quantified by the Dirichlet enerqgy
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where W;; € R, is the weight of the edge (7, j).

Learning a graph from smooth signals. Solve the general
problem

min [[Wo Zj1,1 + f(W),

where Z;; = ||z; —x;||? and W denotes the set of valid adjacency
matrices (positive and symmetric).

State-of-the-art methods assume different models for f(W):

o f(W)=—al'log(W1)+ &||W|F [Kalofolias]

o f(W)=a|W1|*+alW|E+1{|W]11 =N}, [Hu, Dong]

Unless the number of samples is large, learning a graph “ex-
plains” the data structure (variance) better.
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Figure 1. Pixel-wise structure of the MNIST image dataset ob-
tained by a) graph learning [Kalofolias/, b) empirical covariance
estimation, and c) the more computationally expensive sparse in-
verse covariance estimator also known as graphical LASSO[Banerjee].
The vertical axis intuitively quantifies how efficiently the learned
structure captured the data variance, whereas the horizontal axis
corresponds to the number of images used for training.

Measuring the quality of a graph

Definition 1. Total cumulative energy residual (TCER):
Given a data distribution p(X) with mean p and covariance C,
and a sorted orthogonal basis QQ = |q1,...qnN],
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where w, = N4+1—r and the denominator is simply Zfil WyO2,

for o, the rth singular value of C + up' .

We consider the case of a graph that changes slowly over time.

Optimization problem. Discretize time in K windows and
denote by W) for k = 1,..., K the adjacency matrix of the
k-th window. Solve:

K
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o fiime = ||[W® —W =112, enforces that the graph edges
change smoothly over time.
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are expected to have switching edges.

Complexity. O(N“K) per iteration, and the number of it-
erations is typically within the hundreds.
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Dynamic point-cloud de-noising

Goal is to overcome coordinate noise and point registration
error, even if the geometry evolves over time.
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Signals sampled from Gaussian Markov chain:
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Figure 2. Learning a graph from each window indepen-
dently (v = 0), performs better than the covariance matriz
with fewer samples. The new prior helps when the number
of samples are few, achieving the best result for v = 200 (6
samples per window).

Conclusions

New framework for learning dynamically changing graphs from
smooth data observations:

e A time smoothness prior imposes that the graphs learnt
in successive windows change smoothly over time.

e We achieve a good trade-off between temporal resolution
and computation cost.

e Our experiments show that the new model can outperform
classical graph learning and other baseline methods.
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