## **Robust PUF based Authentication**

# Andrea Grigorescu<sup>1</sup>, Holger Boche<sup>1</sup> and Rafael F. Schaefer<sup>2</sup>

<sup>1</sup>Lehrstuhl für Theoretische Informationstechnik, Technische Universität München, 80333 München, Germany

<sup>2</sup>Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA

WIFS 2015 Rome, November 18th, 2015

- Physical Unclonable Functions (*PUFs*): functions that use the production variability to generate device-specific data ⇒ fingerprint of device
- PUFs are used for *device authentication*
- Security on higher layers is usually based on the assumption of insufficient computational capabilities of non-legitimate receivers ⇒ use of *information theoretic secrecy concepts*
- Practical systems often suffer from uncertainty in source state information ⇒ *compound sources*



PUFs consist of:

- Input signal: Challenge
- Output signal: *Response*

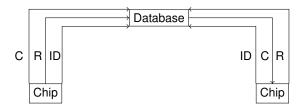




<sup>&</sup>lt;sup>1</sup>C. Böhm and M. Hofer: Physical Unclonable Functions in Theory and Practice, Springer Science Business Media 2014.

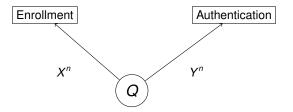
## Enrollment Phase

- Gather a number of challenge response pairs (CRPs)
- Store the CRPs in a CRPs database together with ID
- Authentication phase
  - Claim ID
  - Apply a challenge from the CRP data base
  - Compare the response made by the PUF with the one stored.



### Authentication Model

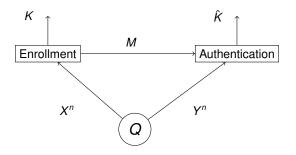
- $\mathcal{X}$  and  $\mathcal{Y}$  finite.
- Discrete memoryless source:  $Q \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$
- Enrollment response sequence:  $x^n \in \mathcal{X}^n$
- Authentication response sequence:  $y^n \in \mathcal{Y}^n$





### Protocol

- Enrollment Phase
  - Observe X<sup>n</sup> at the enrollment terminal
  - Generate secret key K and helper data M
  - Apply one way function f to K
  - Store M, f(K) and f in a public data base
- Authentication Phase
  - Observe Y<sup>n</sup> and M at the authentication terminal
  - Calculate key estimate  $\hat{K}$
  - Apply one way function f to K̂
  - IF  $f(K) = f(\hat{K})$  THEN authentication successful





#### Attention!

- Helper data *M* is public and can easily be eavesdropped upon
- *M* may reveal information about  $K \to \frac{1}{n}I(K; M)$
- *M* may reveal too much information about  $X^n \to \frac{1}{n}I(X^n; M)$



- Block-processing of fixed length *n* large enough.
- Helper data set:  $\mathcal{M} \coloneqq \{1, \dots, M_n\}$
- Secret key set:  $\mathcal{K} \coloneqq \{1, \ldots, K_n\}$

#### Definition

An  $(n, K_n, M_n)$ -code for authentication of the joint source  $Q \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$  consists of an encoder f at the enrollment terminal with

$$f:\mathcal{X}^n\to\mathcal{K}\times\mathcal{M}$$

and a decoder  $\varphi$  at the authentication terminal

$$\varphi: \mathcal{Y}^n \times \mathcal{M} \to \mathcal{K}$$



#### Definition

A secrecy privacy rate pair  $(R_K, R_M) \in \mathbb{R}^2_+$  is called **achievable** for a joint source Q, if for any  $\delta > 0$  there exist an  $n(\delta) \in \mathbb{N}$  and a sequence of  $(n, K_n, M_n)$ -codes such that for all  $n \ge n(\delta)$  we have

$$\Pr{\{\hat{K} \neq K\}} \le \delta$$

$$\frac{1}{n}H(K) + \delta \ge \frac{1}{n}\log K_n \ge R_K - \delta$$

$$\frac{1}{n}I(K;M) \le \delta$$

$$\frac{1}{n}I(X^n;M) \le R_M + \delta$$



For some *U* with alphabet  $|\mathcal{U}| \leq |\mathcal{X}| + 1$  and  $V: \mathcal{X} \to \mathcal{P}(\mathcal{U})$ , we define the region  $\mathcal{R}(Q, V)$  as the set of all  $(R_K, R_M) \in \mathbb{R}^2_+$  satisfying

```
R_{K} \leq I(U; Y)R_{M} \geq I(U; X) - I(U; Y)
```

with  $P_{UXY}(u, x, y) = V(u|x)Q(x, y)$ 

#### Theorem

The set of all achievable secrecy privacy rate pairs for the joint source  $Q \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$  is called secrecy privacy capacity region and is given by

 $\mathcal{C}(\boldsymbol{Q}) = \bigcup_{\boldsymbol{V}: \mathcal{X} \to \mathcal{P}(\mathcal{U})} \mathcal{R}(\boldsymbol{Q}, \boldsymbol{V})$ 

<sup>3</sup>T. Ignatenko and F. Willems: Biometric systems: Privacy and secrecy aspects, IEEE Trans IFS 2009.



<sup>&</sup>lt;sup>2</sup>L. Lai, S. Ho and H.V. Poor: Privacy–Security Trade-Offs in Biometric Security Systems—Part I: Single Use Case, IEEE Trans IFS 2010.

#### Question

- What happens when we have source uncertainty?
- Can we still authenticate securely at positive rates?
- What is the secrecy privacy capacity of the system?



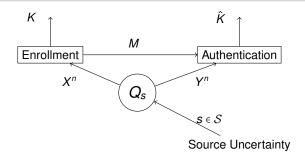
- Let S be a finite state set
- Discrete memoryless joint source

 $\begin{aligned} Q_s^n(x^n, y^n) &\coloneqq \prod_{i=1}^n Q_s(x_i, y_i) = \prod_{i=1}^n p_s(x_i) W_s(y_i | x_i) \text{ with } s \in \mathcal{S}, \, p_s \in \mathcal{P}(\mathcal{X}) \\ \text{and } W_s: \mathcal{X} \to \mathcal{P}(\mathcal{Y}) \end{aligned}$ 

## Definition

The discrete memoryless compound joint source  $\mathfrak{Q}_{\mathcal{X}\mathcal{Y}}$  is given by the family of joint probability distributions on  $\mathcal{X} \times \mathcal{Y}$  as

 $\mathfrak{Q}_{\mathcal{X}\mathcal{Y}} \coloneqq \{ \mathcal{Q}_{s} \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \colon s \in \mathcal{S} \}$ 





#### Definition

A secrecy privacy rate pair  $(R_K, R_M) \in \mathbb{R}^2_+$  is called **achievable** for the compound joint source  $\mathfrak{Q}_{XY}$ , if for any  $\delta > 0$  there exist an  $n(\delta) \in \mathbb{N}$  and a sequence of  $(n, K_n, M_n)$ -codes such that for all  $n \ge n(\delta)$  and for every  $s \in S$  we have

$$\Pr\{\hat{K} \neq K \| Q_{s} \in \mathfrak{Q}_{XY}\} \leq \delta$$

$$\frac{1}{n} H(K \| Q_{s} \in \mathfrak{Q}_{XY}) + \delta \geq \frac{1}{n} \log K_{n} \geq R_{K} - \delta$$

$$\frac{1}{n} I(K; M \| Q_{s} \in \mathfrak{Q}_{XY}) \leq \delta$$

$$\frac{1}{n} I(X^{n}; M \| Q_{s} \in \mathfrak{Q}_{XY}) \leq R_{M} + \delta$$



- Unique marginal distributions over  $\mathcal{X}$  $\mathfrak{Q}_{\mathcal{X}} \coloneqq \left\{ p_s \in \mathcal{P}(\mathcal{X}) \colon s \in S \ p_s(x) = \sum_{y \in \mathcal{Y}} Q_s(x, y) \text{ for every } x \in \mathcal{X} \right\}$
- Index of unique marginal distributions over X
   L := {ℓ: pℓ ∈ QX}
- Sources with same marginal distribution over  $\mathcal{X}$  $\mathfrak{Q}_{\mathcal{XY},\ell} \coloneqq \left\{ Q_s \in \mathfrak{Q}_{\mathcal{XY}} : Q_s(x,y) = p_\ell(x) W_s(y|x) \text{ for every } (x,y) \in \mathcal{X} \times \mathcal{Y} \right\}$
- Index of sources with same marginal distribution over X
   S<sub>ℓ</sub> ≔ {s ∈ S: Q<sub>s</sub> ∈ Ω<sub>XY,ℓ</sub>}

14/19



## Secrecy Privacy Capacity Region

- Compound joint source \$\mathcal{Q}\_{XY}\$
- Fixed  $\ell \in \mathcal{L}, V: \mathcal{X} \to \mathcal{P}(\mathcal{U})$  and for every  $s \in S_{\ell}$
- $\mathcal{R}(V, \ell, s)$  set of all  $(R_{\mathcal{K}}, R_{\mathcal{M}}) \in \mathbb{R}^2_+$  such that

$$\begin{split} R_{K} &\leq I(U; Y \| Q_{s} \in \mathfrak{Q}_{\mathcal{XY}, \ell}) \\ R_{M} &\geq I(U; X | L = \ell \| Q_{s} \in \mathfrak{Q}_{\mathcal{XY}, \ell}) - I(U; Y \| Q_{s} \in \mathfrak{Q}_{\mathcal{XY}, \ell}) \end{split}$$

with 
$$P_{UXY,s}(u, x, y) = V(u|x)Q_s(x, y)$$
.

#### Theorem

The **secrecy privacy capacity region** for the compound joint source  $\mathfrak{Q}_{XY}$  is given by  $\mathcal{C}(\mathfrak{Q}_{XY})$ 

$$\mathcal{C}(\mathfrak{Q}_{\mathcal{X}\mathcal{Y}}) = \bigcap_{\ell \in \mathcal{L}} \bigcup_{V: \mathcal{X} \to \mathcal{P}(\mathcal{U})} \bigcap_{s \in \mathcal{S}_{\ell}} \mathcal{R}(V, \ell, s).$$





## Marginal distribution estimation $p_{\ell} \in \mathcal{P}(\mathcal{X})$

- For every  $\ell, \ell' \in \mathcal{L}$  define  $\delta_{\ell} = \frac{1}{2} \min_{\ell' \neq \ell} \| p_{\ell} p_{\ell'} \|_{TV}$
- Choose  $0 < \delta < \min_{\ell \in \mathcal{L}} \delta_{\ell}$  and consider  $\mathcal{T}_{p_{\ell},\delta}^{n}$ . for every  $\ell, \ell' \in \mathcal{L}$  with  $\ell' \neq \ell$  we have that  $\mathcal{T}_{p_{\ell},\delta}^{n} \cap \mathcal{T}_{p_{\ell},\delta}^{n} = \emptyset$
- Error: If  $x^n$  was generated by the source  $p_{\ell}$ , however  $x^n \notin \mathcal{T}^n_{p_{\ell},\delta}$
- Probability of error:  $p_{\ell}([\mathcal{T}_{p_{\ell},\delta}^{n}]^{c}) \leq \epsilon_{\delta}(n,|\mathcal{X}|)$

## **Random Coding**

- Code construction: Generate  $2^{n(R_{K}+R_{M})}$  codewords  $U_{k,m}^{n}$  with  $k \in \mathcal{K} \coloneqq \{1, \ldots, 2^{nR_{K}}\}$  and  $m \in \mathcal{M} \coloneqq \{1, \ldots, 2^{nR_{M}}\}$  by choosing each symbol independently at random according to  $p_{u} \in \mathcal{P}(\mathcal{U})$ . Codebook  $U = \{U_{k,m}^{n}\}_{(k,m)\in\mathcal{K}\times\mathcal{M}}$
- Encoder set:  $\mathcal{E}_{k,m,\ell}(U) = \mathcal{T}^n_{\Sigma_{\mathcal{X}_\ell},\delta'}(U^n_{k,m})$
- Decoder set:

$$\mathcal{D}'_{k}(m(U),\ell) \coloneqq \bigcup_{s \in \mathcal{S}_{\ell}} \mathcal{T}^{n}_{\Sigma_{\mathcal{Y}_{s}},\delta''}(U^{n}_{k,m})$$
$$\mathcal{D}_{k}(m(U),\ell) \coloneqq \mathcal{D}'_{k}(m(U),\ell) \cap \big(\bigcup_{\substack{k' \neq k \\ k' \in \mathcal{K}}} \mathcal{D}'_{k'}(m(U),\ell)\big)^{c}$$

• Encoder-decoder pair set:  $\mathcal{C}_{k,m,\ell}(U) \coloneqq (\mathcal{E}_{k,m,\ell}(U) \times \mathcal{D}_k(m(U),\ell)) \cap (\bigcup_{s \in \mathcal{S}_\ell} \mathcal{T}^n_{\Sigma_{\mathcal{X}\mathcal{V}_s},\tilde{\delta}}(U^n_{k,m}))$ 



Error Analysis

• Encoder:  $\mathbb{E}_{U}(\epsilon_{E,n}(U)) = \mathbb{E}_{U}(p_{\ell}^{n}((\bigcup_{(k,m)\in\mathcal{K}\times\mathcal{M}}\mathcal{E}_{k,m,\ell}(U))^{c})) \to 0$  for  $n \to \infty$  and

$$R_{\mathcal{K}} + R_{\mathcal{M}} > I(U; X|L = \ell ||Q_s) + \psi(\delta', |\mathcal{U}|, |\mathcal{X}|)$$

• Decoder: For some 
$$t \in S_{\ell}$$
 we have  

$$\mathbb{E}_{U}(\epsilon_{n,k}^{t}(U)) = \mathbb{E}_{U}(\sum_{\mathcal{XY}_{\ell}}^{n}(\mathcal{C}_{\mathcal{E}_{k,m,\ell}}(U)^{c}|U_{k,m}^{n})) \to 0 \text{ for } n \to \infty \text{ and}$$

$$R_{K} < \min_{s \in S_{\ell}} I(U; Y || Q_{s}) - \phi(\delta'', |\mathcal{U}|, |\mathcal{Y}|)$$

$$\Rightarrow R_{K} < \min_{s \in \mathcal{S}_{\ell}} I(U; Y \| Q_{s}) - \phi(\delta'', |\mathcal{U}|, |\mathcal{Y}|) \Rightarrow R_{M} > I(U; X | L = \ell \| Q_{s}) - I(U; Y \| Q_{s}) + \phi(\delta'', |\mathcal{U}|, |\mathcal{Y}|) + \psi(\delta', |\mathcal{U}|, |\mathcal{X}|)$$



Take away

- Robust authentication at *positive key rates* is possible!
- We established a single letter characterization of the capacity!

Future Work

• Extend the model to compound sources with infinite alphabets

# Thanks for Your Attention!