

### Joint Optimisation of Tandem Systems using Gaussian Mixture Density Neural Network Discriminative Sequence Training

Chao Zhang and Phil Woodland

March 8, 2017

Cambridge University Engineering Department

# Introduction

### Tandem Systems as Mixture Density Neural Networks (MDNNs)

- Tandem systems model features produced by DNN using GMMs
- A bottleneck (BN) DNN and GMMs combine to form an MDNN

### Importance of Tandem Systems

- A general framework for modelling non-Gaussian distributions
- Can apply GMM techniques (e.g., adaptation) to improve MDNNs
- Tandem and hybrid systems produce complementary errors

### Weakness of Conventional Tandem Systems

• GMMs and DNN are independently estimated  $\rightarrow$  suboptimal



# Introduction

### Can Tandem and Hybrid Systems Have Comparable WERs?

### Improved Training of Tandem Systems

- Jointly optimise tandem system with MPE or other discriminative sequence criteria
- Can be viewed as MDNN hybrid system MPE training

#### **Proposed Methods**

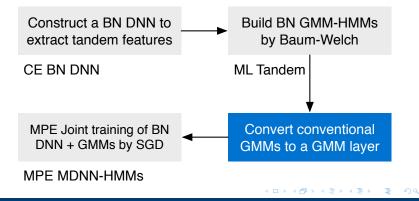
- Adapt extended Baum-Welch (EBW) based GMM MPE training to use stochastic gradient descent (SGD)
- · Propose a set of methods to improve joint optimisation stability



# Methodology

#### System Construction Procedure

Convert GMMs to an MDNN GMM output layer for joint training

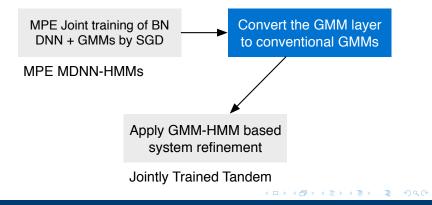




# Methodology

#### System Refinement and Decoding

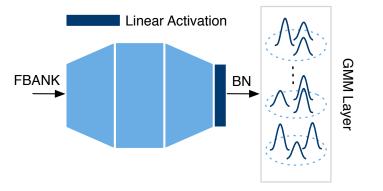
GMM layer is converted back to GMMs to reuse existing facilities





# **ML Tandem System Construction**

• monophone BN GMM-HMMs  $\rightarrow$  initial triphone BN GMM-HMMs  $\rightarrow$  HMM state clustering  $\rightarrow$  final triphone BN GMM-HMMs





# SGD based GMM-HMM Training

#### **GMM Parameter Update Values**

- Calculate the partial derivatives of  ${\mathcal F}$  w.r.t. each GMM parameter and input value
- For SGD, Gaussian component weight and std. dev. values are transformed so constraints satisfied

### **Speed Up**

- Rearrange mean and std. dev. from of Gaussians as matrices
- Speed up GMM calculations by highly optimised general matrix multiplication (GEMM) functions in the BLAS library



# MPE Training for GMM-HMMs using SGD

### **Regularisation**

- Parameter smoothing
  - I-smoothing with  $\mathcal{F}^{ML}$ : data dependent coeff.  $\tau^{ML}(s,g)$
  - H-criterion with  $\mathcal{F}^{\rm MMI}$ : fixed coeff.  $\tau^{\rm MMI}$  (H-criterion)
- L2 regularisation:  $\lambda \cdot \theta^2/2$
- Composite objective function

$$\mathcal{F}^{\mathsf{MPE}} + \tau^{\mathsf{MMI}}(\mathcal{F}^{\mathsf{MMI}} + \tau^{\mathsf{ML}}(s, g)\mathcal{F}^{\mathsf{ML}}) + \lambda \, \theta^2/2$$

### Percentile based Variance Floor

 Modified to find the flooring threshold more efficiently to apply frequently in SGD



# **Tandem System Joint Optimisation**

### Linear to ReLU Activation Function Conversion

- Observe instability issue when averaged partial derivatives w.r.t. linear BN features shifting from positive to negative
- To avoid negative values, modify BN layer bias to equivalently use ReLU by

$$b^{
m bn} - \mu^{
m bn} + 6 \, \sigma^{
m bn}$$

### **Amplified GMM Learning**

- GMMs have a rather different functional form than DNN layers
- Learning rates and L2 reg. coeff. are amplified for GMMs by  $\alpha$



# **Tandem System Joint Optimisation**

### **Relative Update Value Clipping**

- To avoid setting a specific threshold for each type of parameter
- Assuming values are Gaussian distributed, compute thresholds of ⊖ based on stats. in *n*th mini-batch by

 $\mu_{\Theta}[n] + m \sigma_{\Theta}[n]$ 

### **Parameter Update Schemes**

- Update GMMs and hidden layers in an interleaved manner
- Update all parameters concurrently without any restriction
- · Update all parameters concurrently, then update the GMMs only



# **Experimental Setup**

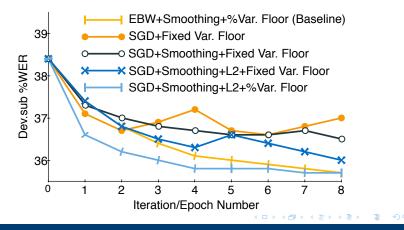
### Data

- 50h and 200h data from ASRU 2015 MGB challenge
- A trigram word level LM with a 160k word dictionary
- **dev.sub** test set contains 5.5h data with reference segmentation and 285 automatic speaker clusters

### **Systems**

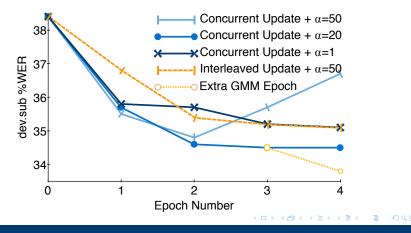
- All experiments were conducted with HTK 3.5
- 40-dim log-Mel filter bank features with their  $\Delta$  coefficients
- DNN structure  $720 \times 1000^5 \times \{4000, 6000\}$ BN DNN structure  $720 \times 1000^4 \times 39 \times 1000 \times \{4000, 6000\}$
- Each GMM has 16 Gaussians (sil/sp has 32 Gaussians)

#### Comparison of EBW and SGD GMM Training (50h)





Joint Training Experiments with Different  $\alpha$  (50h)





#### **Comparisons Among Various 50h Systems**

 T<sub>2</sub><sup>50h</sup> is comparable to hybrid MPE systems (H<sub>1</sub><sup>50h</sup>&H<sub>2</sub><sup>50h</sup>) in both WER and #parameters, and is useful for hybrid system (H<sub>4</sub><sup>50h</sup>)

| ID                                                       | System                                  | WER% |
|----------------------------------------------------------|-----------------------------------------|------|
| T <sub>0</sub> <sup>50h</sup>                            | ML BN-GMM-HMMs                          | 38.4 |
| T <sup>50h</sup>                                         | MPE BN-GMM-HMMs                         | 36.1 |
| $T_2^{50h}$                                              | MPE MDNN-HMMs                           | 33.8 |
| $H_0^{50h} \\ H_1^{50h}$                                 | CE DNN-HMMs                             | 36.9 |
|                                                          | MPE DNN-HMMs                            | 34.2 |
| $H_2^{50h}$                                              | MPE DNN-HMMs+H <sup>50h</sup> align.    | 33.7 |
| $H_3^{\overline{5}0h}$                                   | MPE DNN-HMMs+T <sup>50h</sup> align.    | 33.6 |
| H <sup>50h</sup><br>H <sup>50h</sup><br>H <sup>50h</sup> | MPE DNN-HMMs+ $T_2^{50h}$ align. & tree | 33.2 |



#### **Comparisons Among Various 200h Systems**

MLLR and joint decoding still improve system performance

| ID                             | System                                                    | WER% |
|--------------------------------|-----------------------------------------------------------|------|
| $T_0^{200h}$<br>$T_1^{200h}$   | ML BN-GMM-HMMs                                            | 33.7 |
| $T_1^{200h}$                   | MPE MDNN-HMMs                                             | 29.8 |
| $T_{2}^{200h}$                 | MPE MDNN-HMMs+MLLR                                        | 28.6 |
| H <sub>0</sub> <sup>200h</sup> | CE DNN-HMMs                                               | 31.9 |
| $H_1^{200h}$                   | MPE DNN-HMMs                                              | 29.6 |
| $H_2^{200h}$                   | MPE DNN-HMMs+T <sup>200h</sup> align. & tree              | 29.0 |
| J <sub>1</sub> <sup>200h</sup> | $T_1^{200h} \otimes H_2^{200h}$ joint decoding            | 28.3 |
| $J_2^{200h}$                   | $T_2^{200h} \otimes H_2^{\overline{2}00h}$ joint decoding | 27.4 |
|                                |                                                           |      |



• • • • • • • • • •

# Conclusions

#### **Main Contributions Include**

- EBW based GMM-HMM MPE training is extended to SGD
- MDNN discriminative sequence training is studied as tandem system joint optimisation
- A set of methods are modified/proposed to improve training that result in an 6.4% rel. WER reduction over MPE tandem systems

### The Jointly Trained Tandem System

- is comparable to MPE hybrid systems in WER and #parameters
- is useful for hybrid system construction and system combination
- can also benefit from existing GMM approaches (e.g., MLLR)



**Thanks for listening!** 



