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Introduction

Tandem Systems as Mixture Density Neural Networks (MDNNs)

• Tandem systems model features produced by DNN using GMMs
• A bottleneck (BN) DNN and GMMs combine to form an MDNN

Importance of Tandem Systems

• A general framework for modelling non-Gaussian distributions
• Can apply GMM techniques (e.g., adaptation) to improve MDNNs
• Tandem and hybrid systems produce complementary errors

Weakness of Conventional Tandem Systems

• GMMs and DNN are independently estimated→suboptimal
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Introduction

Can Tandem and Hybrid Systems Have Comparable WERs?

Improved Training of Tandem Systems

• Jointly optimise tandem system with MPE or other discriminative
sequence criteria

• Can be viewed as MDNN hybrid system MPE training

Proposed Methods

• Adapt extended Baum-Welch (EBW) based GMM MPE training
to use stochastic gradient descent (SGD)

• Propose a set of methods to improve joint optimisation stability
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Methodology

System Construction Procedure

• Convert GMMs to an MDNN GMM output layer for joint training

Construct a BN DNN to 
extract tandem features

Build BN GMM-HMMs 
by Baum-Welch

MPE Joint training of BN 
DNN + GMMs by SGD 

Convert conventional 
GMMs to a GMM layer

CE BN DNN ML Tandem

MPE MDNN-HMMs

4/17



Methodology

System Refinement and Decoding

• GMM layer is converted back to GMMs to reuse existing facilities

MPE Joint training of BN 
DNN + GMMs by SGD 

Convert the GMM layer 
to conventional GMMs

Apply GMM-HMM based 
system refinement

MPE MDNN-HMMs

Jointly Trained Tandem
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ML Tandem System Construction

• monophone BN GMM-HMMs→ initial triphone BN GMM-HMMs
→ HMM state clustering→ final triphone BN GMM-HMMs

Linear Activation

BNFBANK

G
M

M
 Layer
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SGD based GMM-HMM Training

GMM Parameter Update Values

• Calculate the partial derivatives of F w.r.t. each GMM parameter
and input value

• For SGD, Gaussian component weight and std. dev. values are
transformed so constraints satisfied

Speed Up

• Rearrange mean and std. dev. from of Gaussians as matrices
• Speed up GMM calculations by highly optimised general matrix

multiplication (GEMM) functions in the BLAS library

7/17



MPE Training for GMM-HMMs using SGD

Regularisation
• Parameter smoothing

• I-smoothing with FML: data dependent coeff. τML(s, g)
• H-criterion with FMMI: fixed coeff. τMMI (H-criterion)

• L2 regularisation: λ · θ2/2
• Composite objective function

FMPE + τMMI(FMMI + τML(s,g)FML) + λ θ2/2

Percentile based Variance Floor
• Modified to find the flooring threshold more efficiently to apply

frequently in SGD
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Tandem System Joint Optimisation

Linear to ReLU Activation Function Conversion
• Observe instability issue when averaged partial derivatives w.r.t.

linear BN features shifting from positive to negative
• To avoid negative values, modify BN layer bias to equivalently

use ReLU by
bbn − µbn + 6σbn

Amplified GMM Learning

• GMMs have a rather different functional form than DNN layers
• Learning rates and L2 reg. coeff. are amplified for GMMs by α
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Tandem System Joint Optimisation

Relative Update Value Clipping

• To avoid setting a specific threshold for each type of parameter
• Assuming values are Gaussian distributed, compute thresholds

of Θ based on stats. in nth mini-batch by

µΘ[n] + m σΘ[n]

Parameter Update Schemes

• Update GMMs and hidden layers in an interleaved manner
• Update all parameters concurrently without any restriction
• Update all parameters concurrently, then update the GMMs only
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Experimental Setup

Data
• 50h and 200h data from ASRU 2015 MGB challenge
• A trigram word level LM with a 160k word dictionary
• dev.sub test set contains 5.5h data with reference segmentation

and 285 automatic speaker clusters

Systems

• All experiments were conducted with HTK 3.5
• 40-dim log-Mel filter bank features with their ∆ coefficients
• DNN structure 720× 10005 × {4000,6000}

BN DNN structure 720× 10004 × 39× 1000× {4000,6000}
• Each GMM has 16 Gaussians (sil/sp has 32 Gaussians)
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Experimental Results

Comparison of EBW and SGD GMM Training (50h)
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Experimental Results

Joint Training Experiments with Different α (50h)
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Experimental Results

Comparisons Among Various 50h Systems

• T50h
2 is comparable to hybrid MPE systems (H50h

1 &H50h
2 ) in both

WER and #parameters, and is useful for hybrid system (H50h
4 )

ID System WER%

T50h
0 ML BN-GMM-HMMs 38.4

T50h
1 MPE BN-GMM-HMMs 36.1

T50h
2 MPE MDNN-HMMs 33.8

H50h
0 CE DNN-HMMs 36.9

H50h
1 MPE DNN-HMMs 34.2

H50h
2 MPE DNN-HMMs+H50h

1 align. 33.7
H50h

3 MPE DNN-HMMs+T50h
2 align. 33.6

H50h
4 MPE DNN-HMMs+T50h

2 align. & tree 33.2
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Experimental Results

Comparisons Among Various 200h Systems

• MLLR and joint decoding still improve system performance

ID System WER%

T200h
0 ML BN-GMM-HMMs 33.7

T200h
1 MPE MDNN-HMMs 29.8

T200h
2 MPE MDNN-HMMs+MLLR 28.6

H200h
0 CE DNN-HMMs 31.9

H200h
1 MPE DNN-HMMs 29.6

H200h
2 MPE DNN-HMMs+T200h

1 align. & tree 29.0

J200h
1 T200h

1 ⊗H200h
2 joint decoding 28.3

J200h
2 T200h

2 ⊗H200h
2 joint decoding 27.4
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Conclusions

Main Contributions Include
• EBW based GMM-HMM MPE training is extended to SGD
• MDNN discriminative sequence training is studied as tandem

system joint optimisation
• A set of methods are modified/proposed to improve training that

result in an 6.4% rel. WER reduction over MPE tandem systems

The Jointly Trained Tandem System

• is comparable to MPE hybrid systems in WER and #parameters
• is useful for hybrid system construction and system combination
• can also benefit from existing GMM approaches (e.g., MLLR)
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Thanks for listening!
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