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ABSTRACT

The mean curvature has been shown a proper regularization in
various ill-posed inverse problems in signal processing. Tra-
ditional solvers are based on either gradient descent methods
or Euler Lagrange Equation. However, it is not clear if this
mean curvature regularization term itself is convex or not.
In this paper, we first prove that the mean curvature regular-
ization is convex if the dimension of imaging domain is not
larger than seven. With this convexity, all optimization meth-
ods lead to the same global optimal solution. Based on this
convexity and Bernstein theorem, we propose an efficient fil-
ter solver, which can implicitly minimize the mean curvature.
Our experiments show that this filter is at least two orders of
magnitude faster than traditional solvers.

Index Terms— Mean Curvature, Curvature Filter, Bern-
stein, convex, half-window regression.

1. INTRODUCTION

Estimating the signal from observed data is a fundamental
task in signal processing. There are many theories that have
been developed in past decades to achieve this goal, such
as variational methods, wavelet theory, dictionary learning,
compressed sensing, etc.

Among these theories, Bayesian Theorem can be used to
derive variational methods. Given the observed data I(~x),
where ~x ∈ Ω ⊂ Rn is the spatial coordinate, Ω is the sam-
pling domain, and n is the dimension, we want to estimate the
signal U(~x). This can be carried out by Bayesian Theorem:

p(U |I) =
p(I|U)p(U)

p(I)
∝ p(I|U)p(U) , (1)

where p(·) denotes the probability. Maximizing the probabil-
ity p(U |I) is equivalent to minimizing following energy

E(U) = − log(p(U |I)) . (2)

Plugging in the Eq. 1, we have

E(U) = − log(p(I|U))− log(p(U)) . (3)

Therefore, both the sampling model (generating I from U )
and some prior aboutU have to be assumed in this framework.

In general, this links Bayesian Theorem and the variational
framework:

max log(p(U |I)) = log(p(I|U)) + log(p(U))
m m

min E(U) = EΦ0
(U, I) + EΦ1

(U) ,
(4)

where the double headed arrows indicate the counterparts in
these two approaches.

The EΦ0
is the data fitting energy while the EΦ1

is the reg-
ularization energy. EΦ0

measures how well an estimation of
U fits the data I . This generally depends on the sampling
process. The `2 norm is commonly used because the mea-
surement error usually satisfies Gaussian distribution, which
leads to EΦ0

=
‖U−I‖22
σ2 (σ is a parameter). Another frequent

choice is the `1 norm which corresponds to Laplacian noise
model, because it is robust to outliers. In most of models,
EΦ1 is a regularization term that imposes the prior knowledge
about ground truth U , such as Tikhonov, the `2 norm of the
gradient, symmetry [1], gradient distribution [2, 3, 4, 5], Total
Variation (TV) [6], Mean Curvature (MC) [7, 8, 9, 10, 4], or
Gaussian Curvature (GC) [11, 12, 4].

Among these regularizations, MC is particularly interest-
ing because it is related to the minimal surfaces that is com-
mon in our physical world. Several researchers have shown
that imposing MC leads to a better result compared with im-
posing TV [8, 9]. This, however, has not been explained the-
oretically before. In this paper, we show that MC imposes a
higher order approximation to the signal than TV does.

1.1. Traditional Solvers

Although MC is preferred, it is difficult to minimize the mean
curvature regularized models. Traditionally, there are two
ways to minimize it. One is based on gradient descent method
or called diffusion schemes [7, 8]

∂U(~x, t)

∂t
= −∂E(U(~x, t))

∂U(~x, t)
, U(~x, 0) = I(~x) . (5)

This type of methods suffer from the numerical stability re-
quirement (CLF condition). Therefore, the step size in each
iteration is limited. They usually need a large number of iter-
ations to converge. The other type is based on Euler Lagrange
Equation [9, 10], which is the necessary condition of being a
local minimum. In general, these methods are more efficient



Fig. 1. Regularization is the dominant part in optimization.

than diffusion schemes. But the derived scheme is usually
complicated and its physical meaning is missing or difficult
to understand [10, 13].

1.2. Motivation

Besides the complicate equation, another drawback of tradi-
tional methods is that they are computationally slow [8, 9, 10],
which hampers the application of mean curvature. To accel-
erate the computation, the multigrid strategy is adopted [13].
Even with the multigrid acceleration, these methods are still
much slower than our filter as shown in the experiment sec-
tion. The main reason is that these two types of approaches
start from the total energy E(U) in Eq. 4 without considering
the geometric meaning of minimizing mean curvature.

Another problem for previous solvers is that they are not
generic. They require the imaging model EΦ0 to be differen-
tiable with respect to U . This is not always true, for example,
when EΦ0

= ‖U − I‖1 or EΦ0
=
∫
|U − I|‖∇U‖d~x.

1.3. Contribution

To overcome these issues, we propose to minimize the regu-
larization energy. Our method is inspired by the observation
that regularization energy EΦ1

is the dominant part during the
minimization. As shown in Fig. 1, the regularization energy
EΦ1

usually decreases while the energy EΦ0
usually increases

if the initial condition is the original image. Since the total en-
ergy has to decrease, EΦ1 must be the dominant part. There-
fore, as long as the decreased amount in EΦ1

is larger than the
increased amount in EΦ0

, the total energy E decreases.
There are several benefits of doing so. First, we do not

require the total energy to be differential. Therefore, our
method can handle arbitrary complex noise model. Second,
we don’t need to compute mean curvature, which means that
the estimated image does not need to be smooth. Therefore,
the edges are preserved. Third, the resulting filter is simple to
compute, and its physical meaning is clear.

Another contribution of this paper is that we prove that
the mean curvature regularization is convex when n ≤ 7 (n is
the dimension of imaging domain, for example, n = 2 for 2D

images). Thanks to this convexity, the results from different
solvers converge to the same global unique solution.

2. CONVEXITY OF MEAN CURVATURE
REGULARIZATION

First, we show the relationship between mean curvature and
minimal surfaces. Then we prove the convexity of mean cur-
vature regularization, based on Bernstein theorem.

2.1. Mean Curvature Regularization

Let’s write the mathematical form of mean curvature regular-
ization. We embed the U into a higher dimension space to
form a surface Ψ(~x) = (~x, U(~x)) ∈ Rn+1. And the mean
curvature of Ψ is defined as

H(Ψ) =
1

n

n∑
i=1

κi , (6)

where κi is the principle curvature of Ψ [14]. When n = 2,
this mean curvature becomes the well-known case. The mean
curvature regularization of U is defined as

EΦ1
(U) = EH(U) = EH(Ψ) =

∫
~x∈Ω

|H(Ψ)|qdΨ , (7)

where q ≥ 1 is a positive real number. We take q = 1 in the
rest of this paper.

2.2. Minimal Surface

Let’s see how the mean curvature regularization is related to
minimal surfaces. The area of Ψ is defined as

A(Ψ) =

∫
~x∈Ω

√
1 + |∇U |2d~x , (8)

where∇ is the gradient operator. IfA is minimal, using Euler
Lagrange equation [15], we have

∇ ·

(
∇U√

1 + |∇U |2

)
= 0 , (9)

where ∇· is the divergence operator. This is known as min-
imal surface equation [16]. If U satisfies this equation, then
Ψ is called minimal surface. In 1776, Meusnier proved that
EH(Ψ) = 0 is equivalent to minimal surface equation [17].
Therefore, imposing the mean curvature regularization means
assuming that the ground truth is a piecewise minimal surface.

2.3. Linearity and Convexity

Let Ωi denote an open set region in Ω such that Ωi ∩ Ωj = ∅
for i 6= j and Ω = ∪i(Ωi ∪ ∂Ωi), where ∂Ωi denotes the
boundary of Ωi. On Ωi, we have following classical result
from differential geometry [18]



Theorem 1. [Bernstein Theorem] On Ωi ∈ Rn and n ≤ 7,
if Ψ is a minimal surface, thenU(~x) must be a linear function.

In most of image processing problems, this dimension re-
quirement can be easily satisfied, for example, n = 2 for
2D images. This theorem leads to an important conclusion:
imposing mean curvature regularization is equivalent to as-
suming that the signal is piecewise linear. Therefore, mean
curvature regularization is a higher order approximation
to the signal, compared with TV regularization, which as-
sumes that the signal is piecewise constant. This explains
why MC is better than TV. This fact has been confirmed nu-
merically in previous works [8, 9]. Since Ωi ∩ Ωj = ∅ for
i 6= j, the linearity of U can be directly obtained on Ω.

Based on this linearity, we can prove following result

Theorem 2. When n ≤ 7, S = {U |EH(U) = 0} is convex.

Proof. According Theorem 1, for any U1, U2 ∈ S and n ≤ 7,
U1 and U2 must be a piecewise linear function. Let Uλ =
λU1 + (1− λ)U2 for 0 ≤ λ ≤ 1 denote a linear combination
of U1 and U2. Sine U1 and U2 are linear functions, Uλ is also
a linear function. We need to prove that Uλ ∈ S.

Let’s take arbitrary two imaging regions Ω1 and Ω2 for U1

and U2, respectively. There are three possible cases:

? 1) If Ω1∩Ω2 = ∅, thenUλ has a linear form on Ω1∪Ω2.
Clearly, EH(Uλ) = 0, thus Uλ ∈ S.

? 2) Ω1 ∩ Ω2 6= ∅ is a general case. We have proved the
case for Ω1 ∪ Ω2\{Ω1 ∩ Ω2} in case 1. Therefore we
only need to prove the theorem on Ω1 ∩ Ω2(case 3).

? 3) When Ω1 = Ω2, if U1(∂Ω1) = U2(∂Ω2), then U1 =
U2. Therefore, Uλ = U1 and Uλ ∈ S . Otherwise, U1

and U2 do not consist on the boundary. Since Uλ ∈ S
on Ω1\∂Ω1, we only need to prove

∫
~x∈∂Ω1

|H(U)|d~x =

0 for the boundary. In fact, from Lebesgue integration
point of view, when |H(U)| < +∞, we only need to
prove

∫
~x∈∂Ω1

d~x = 0, which is well-known in mathe-

matics and also a good assumption in signal processing.

In summary, Uλ ∈ S and thus S is convex.

3. BERNSTEIN FILTER

Thanks to this convexity property from theorem 2, the global
optimal solution is unique if the data fitting energy EΦ0 is
also convex. Therefore, the result from different solvers must
converge to the same global optimal solution.

Meanwhile, theorem 1 is a strong result in the sense that
the exact solutions for the mean curvature regularization must
have linear forms. Therefore, we can construct a filter solver
to minimize mean curvature regularizations based on this the-
orem. We name this filter as Bernstein Filter (BF).

In this filter, we use all possible linear forms (that are
minimal surfaces) to approximate the data and choose the
minimal change to update the current estimation. Since the
minimal surfaces have been used, Bernstein filter is more ef-
ficient in minimizing mean curvature, compared with tradi-
tional solvers, as shown in the experiment section.

3.1. All possible planes Pk

Fig. 2. Four planes Pk in a 3 × 3 local window. The plane
is determined by the five black points {xi, yj , U(xi, yj)} on
the shaded rectangle. The red dot indicates position (xi, yj).
Thanks to Theorem 1, ∃k such that (xi, yj , U(xi, yj)) ∈ Pk.

Let’s consider the discrete digital image I(xi, yj), where
1 ≤ i ≤ M and 1 ≤ j ≤ N are pixel index. We want to
estimate U(xi, yj) such that {(xi, yj , U(xi, yj))} lives on a
minimal surface. According to Theorem 1, (xi, yj , U(xi, yj))
and its some neighbors must have a linear form. In a local
3 × 3 window, we can find all possible such linear forms or
planes, as illustrated in Fig. 2. We use P denote these planes
and use Pk to indicate the kth plane in P .

According Theorem 1, we need to update currentU t(xi, yj)
to a new U t+1(xi, yj), such that ∃k, (xi, yj , U t+1(xi, yj)) ∈
Pk. First, we compute the signed distance dk between current
U(xi, yj) and Pk, for k = 1, · · · , 4. Then, we choose one of
dk to update the current estimation U(xi, yj).

3.2. Signed Distance from U(xi, yj) to Pk

Let’s take the left case in Fig. 2 as an example. First, we
take the (xi, yj) (the red dot) as origin and use U0 to denote
U(xi, yj). In this local coordinate, we have the five points
[1, 1, U1], [1, 0, U2], [1,−1, U3], [0,−1, U4] and [0, 1, U5],
where U1 = U(xi+1, yj+1), U2 = U(xi+1, yj), U3 =
U(xi+1, yj−1), U4 = U(xi, yj−1) and U5 = U(xi, yj+1).
Since Pk has linear form U = C2x̂ + C1ŷ + C0, where x̂
and ŷ denote the local coordinate, the parameters C2, C1 and
C0 can be found by performing a linear regression on this
half-window and thus by minimizing

T (C2, C1, C0) =

5∑
i=1

(C2x̂i + C1ŷi + C0 − Ui)2 . (10)

Letting ∂T (C2,C1,C0)
∂C{2,1,0}

= 0, we have

3 0 3
0 4 0
3 0 5

C2

C1

C0

 =


3∑

i=1

Ui

U1 + U5 − U3 − U4
5∑

i=1

Ui

 . (11)



Clearly, it has an analytical solution

C2

C1

C0

 =

 1
3

1
3

1
3

−1
2

−1
2

1
4

0 − 1
4

− 1
4

1
4

0 0 0 1
2

1
2



U1

U2

U3

U4

U5

 . (12)

Since (xi, yj) is the origin (0,0) in the local coordinate, we
have the new estimation U t+1(xi, yj) = C0, which only
needs one plus and one division operations from current
estimation (U

t
4+Ut

5

2 ). Then the signed projection distance is

dk = U t+1
0 − U t0 = C0 − U t0 =

U t4 + U t5
2

− U t0 . (13)

3.3. Bernstein Filter

After computing these {dk}, we find the dm that has mini-
mal absolute value in all {dk} and update U(xi, yj) such that
(xi, yj , U(xi, yj)) ∈ Pk. This is summarized in Algorithm 1.

Algorithm 1 Bernstein Filter
Require: IterationNum, I(xi, yj)
U0(xi, yj) = I(xi, yj), t = 0
while t < IterationNum do

for i=2:M-1,j=2:N-1 do
d1 = 1

2 [U t(xi−1, yj) + U t(xi+1, yj)]−U t(xi, yj)
d2 = 1

2 [U t(xi, yj−1) + U t(xi, yj+1)]−U t(xi, yj)
find dm such that |dm| = min

k=1,2
{|dk|}

U t+1(xi, yj) = U t(xi, yj) + dm
end for
t = t+ 1

end while
Ensure: U(xi, yj)

solver Multigrid BF MC filter BF
(language) (Matlab) (Matlab) (C++) (C++)

Lena 183 6.3 0.035 0.025
Cameraman 648 6.5 0.035 0.025
Fingerprint 587 6.4 0.035 0.025

Table 1. running time in seconds (images with 512 × 512
resolution). The iteration is 30 for MC filter and our filter.

4. EXPERIMENTS

Bernstein filter is at least two orders of magnitude faster
than multigrid solver [13], which is the fastest so far. In
contrast, one iteration of Augmented Lagrangian Method on
512×512 image usually takes few hundred seconds [10]. The
running time comparison is summarized in Tab. 1. The results
in Fig 3 along with the EH(U) profiles indicate that our filter

(a) Energy rate in Log scale (b) convergence plot

Fig. 3. From top to bottom: original images and zoom in
patches; results from Multigrid solver [13]; results from MC
filter [4] with 30 iterations; results from our filter with 30 it-
erations. a)The energy rate EH(Uit)

EH(I) in Log scale, BF (solid
lines), [4] (dash lines) and [13] (solid line with disk, only
shows the converged state). b)The numerical convergence
rates of our filter on 500 images.

indeed minimizes mean curvature. We also benchmark our
approach on Berkeley Segmentation Data Set (BSDS500) and
the numerical convergence rate is shown in Fig. 3(b). Source
code is at http://github.com/YuanhaoGong/CurvatureFilter

5. CONCLUSION

In this paper, we have proved the convexity of mean curvature
regularization. We have shown that Bernstein filter can effi-
ciently minimize mean curvature regularization. Our experi-
ments show that Bernstein filter is at least two orders of mag-
nitude faster than traditional solvers. We believe that Bern-
stein filter can be extended into higher dimension and used in
a large range of image processing problems in the future.
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