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Motivation and Introduction

mmWyvae one of the key ingredients for 5G

Several GHz of spectrum (10 - 100 GHz) to
provide Gbps data rates

Leverage array gain

mmWave channel estimation is challenging

Large transmit and receive antenna arrays
Limited number of RF chains

Beam training required: exhaustive search
or bisection search

Channel comprise of few dominant paths
i.e. sparse

Compressive sensing and sparse signal recovery
for CSI estimation

System and Channel model
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Hybrid Analog-digital Architecture.

The geometric channel model
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Exploit sparsity in the angular domain
S(®) and S(®) matrix of all resolvable
directions Q (Q > L)
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I Desai, Vip, et al. "Initial beamforming for mmWave communications.
" Signals, Systems and Computers, on. IEEE 48th Asilomar Confer-
ence, 2014.

Bayesian Channel Estimation

Goal: to find MAP estimate (Bayes Rule)
Two-layer hierarchical prior model
Fast SBL algorithm to solve the Type-II ML

MAP function
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Estimate « from the data: Type-II ML
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SBL cost function
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I[solating the etfect of each a;,
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initialize ¢ by choosing an m, compute «,, using (3)
Compute 2 and u from (1) (which are scalers initially)

Select any i-th column vector of ¥, say 1\;

If converged terminate, otherwise go to 2

Non-Bayesian Channel Estimation

Problem: ¢, norm minimization problem

If |g;|* > s; and a; < oo, (; is in the model), update a; using (3)
If |g; >>s;, and a; = oo, add 1 ; to the model, update «a; using (3)
If |g;|* < s;, and a; < oo, delete \»; from the model, set a; = co
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ADMM algorithm to avoid matrix inversion in each iteration

SCA to solve the problem

/> norm minimization problem
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ADMM reformulation
minimize |ly—Yh|5+AY,,log(zm| +¢€)

h,z
subjectto h=1z

Augmented Lagrangian

Ly(h,z,u) = 1Y ;1log(z;| +€) + ly— Phl5
+plz—h+ul;5 - pluls.

initialize zX, u* and k=0
Update h¥*1 = (W 4 p1) ' [wHy 4 p (2K + uk)]

Update zt1 = h**1 —u*-21/p ( Zy )

(1212, +€)

Update uk+1 — uk 4 Zk+l _ hk+1
Setk=k+1
If converged terminate, otherwise go to 2
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Numerical Examples

N_.=M =16’NRF

——LASSO with ADMM
FSBL

——GSBL

OMP/ with threshold

=MRF=2

10 -

NMSE (dB)

15

20 -

-25
0 2 4 6 8 10 12 14 16 18 20

NMSE vs SNR plot

4 clusters of scatterers

Tx bins
original channel

Ih°

[

Ih°

[h|

OMP

Angle domain representation of the channel at
SNR = 3 dB.

Two channel estimation algorithms have
been proposed: Bayesian (FSBL) and

non-Bayesian (LASSO with ADMM)
Future works:
Grid-less approach
Wideband Channel (Frequency Selective)
Tracking the AoDs, AoAs and path gains in a
mobile scenario



