Bayesian Learning based Millimeter-Wave Sparse Channel Estimation with Hybrid Antenna Arrays

Mubarak Umar Aminu, Marian Codreanu and Markku Juntti

University of Oulu, Finland. email:{firstname.lastname}@oulu.fi

Bayesian Channel Estimation

19th IEEE International Workshop on SIgnal Processing Advances in Wireless Comminucations (SPAWC) Jun 25-Jun 28, 2018 - Kalamata, Greece

(3)

CENTRE FOR WIRELESS COMMUNICATIONS University of Oulu

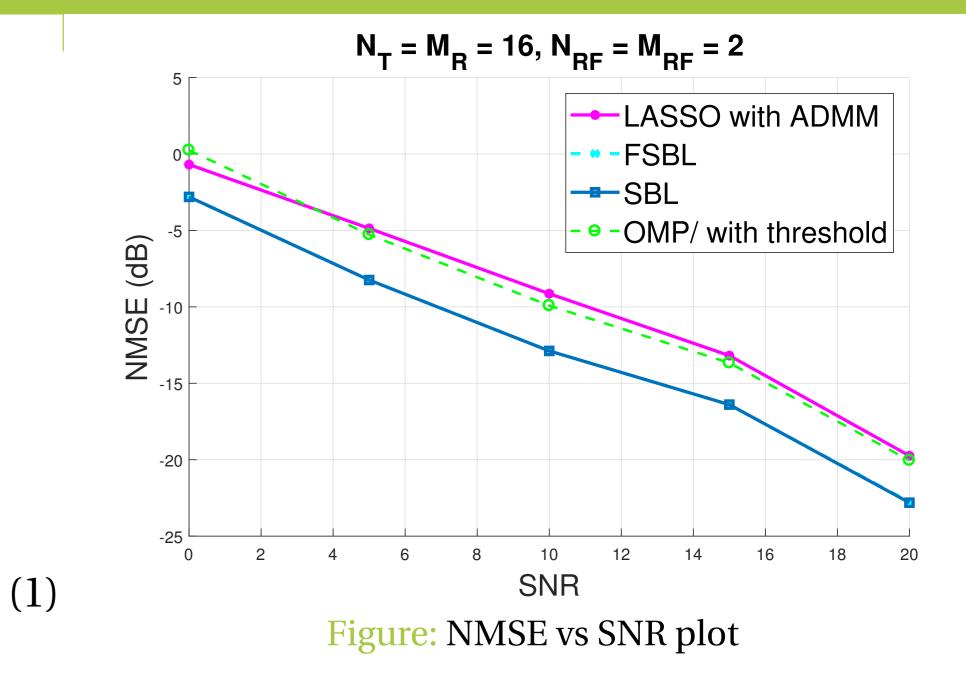
Numerical Examples

mmWave-Introduction:

mmWvae one of the key ingredients for 5G

Motivation and Introduction

- Several GHz of spectrum (10 100 GHz) to provide Gbps data rates
- Leverage array gain


T A T		

Sparse Bayesian Learning:

- Goal: to find MAP estimate (Bayes Rule)
- Two-layer hierarchical prior model
- ► Fast SBL algorithm to solve the Type-II ML

Setup:

MAP function

mmWave Channel Estimation:

- mmWave channel estimation is challenging
 - Large transmit and receive antenna arrays
 - Limited number of RF chains
- Beam training required: exhaustive search or bisection search
- Channel comprise of few dominant paths
 i.e. *sparse*
- Compressive sensing and sparse signal recovery for CSI estimation

System and Channel model

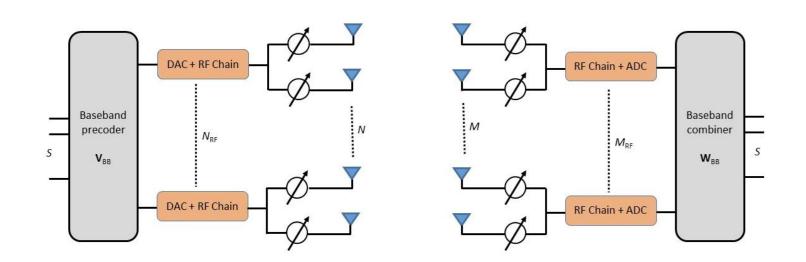


Figure: Hybrid Analog-digital Architecture. **mmWave Channel**:

- The geometric channel model
 - I.

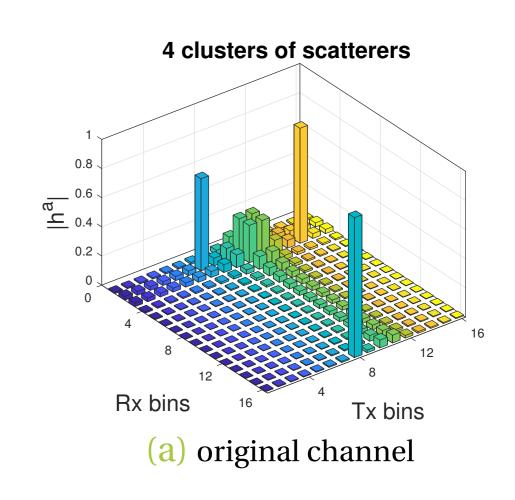
- $p(\mathbf{h}, \alpha, \sigma^2 | \mathbf{y}) = p(\mathbf{h} | \mathbf{y}, \alpha, \sigma^2) p(\alpha, \sigma^2 | \mathbf{y})$
- The first term in the RHS

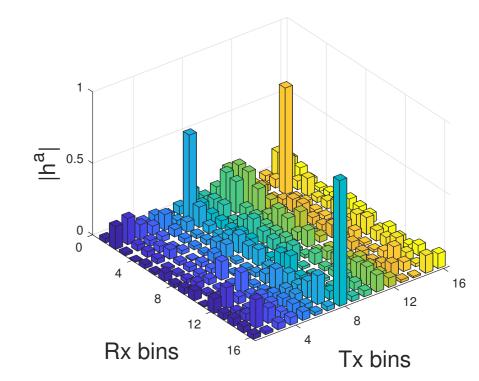
 $p(\mathbf{h}|\mathbf{y}, \alpha, \sigma^2) = \mathscr{CN}\left(\underbrace{\sigma^{-2}\Sigma\Psi^{\mathrm{H}}\mathbf{y}}_{\mu}, \underbrace{(\sigma^{-2}\Psi^{\mathrm{H}}\Psi + \mathbf{A})^{-1}}_{\Sigma}\right)$

- Estimate α from the data: Type-II ML $p(\mathbf{y}|\alpha) = \mathscr{CN}\left(\mathbf{0}, \underbrace{\sigma^2 \mathbf{I} + \Psi \mathbf{A}^{-1} \Psi^H}_{\mathbf{C}}\right)$
- SBL cost function

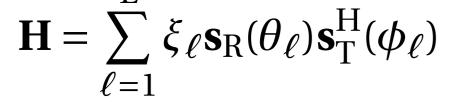
 $\mathscr{L}(\alpha) = \log|\mathbf{C}| + \mathbf{y}^{\mathrm{H}}\mathbf{C}^{-1}\mathbf{y}$

► Isolating the effect of each α_m

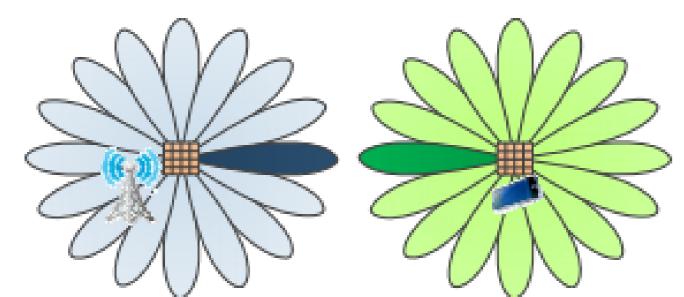

$$\mathscr{L}(\alpha) = \mathscr{L}(\alpha_{-\mathbf{m}}) + \underbrace{\log \alpha_m - \log(\alpha_m + s_m) + \frac{|q_m|^2}{\alpha_m + s_m}}_{\ell(\alpha_m)}$$
(2)


•
$$\alpha_m^*$$
 that minimizes $\ell(\alpha_m^*)$

$$\alpha_m = \begin{cases} \frac{s_m}{(|q_m|^2 - s_m)} & \text{if } |q_m|^2 > s_m, \\ \infty & \text{if } |q_m|^2 \le s_m \end{cases}$$
• $s_m = \psi_m^H \mathbf{C}_{-m}^{-1} \psi_m \text{ and } q_m = \psi_m^H \mathbf{C}_{-m}^{-1} \mathbf{y}$


$$= 5m - \Psi_m \Theta_{-m} \Psi_m$$
 and $\Psi_m - \Psi_m$

Fast SBL algorithm:



Obtain: ξ_{ℓ} (*the complex channel gain*), θ_{ℓ} (*Angle of arrival*) and ϕ_{ℓ} (*Angle of departure*) for channel estimation

 $\mathbf{H} = \mathbf{S}(\Theta)\mathbf{H}^{\nu}\mathbf{S}(\Phi)^{\mathrm{H}}$

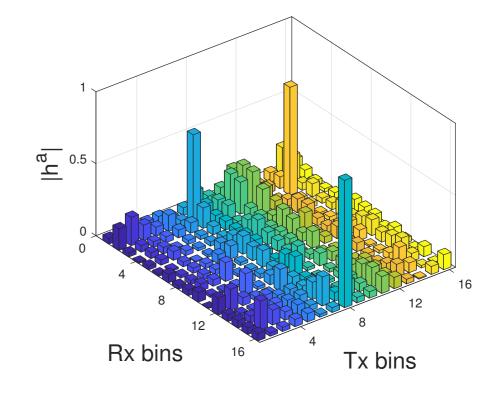
- Exploit sparsity in the angular domain
- ► **S**(Θ) and **S**(Φ) matrix of all resolvable directions Q ($Q \gg L$)
- H^v is (*jointly sparse*) consists of the complex LASSO channel gains

mmWave Channel Sensing:

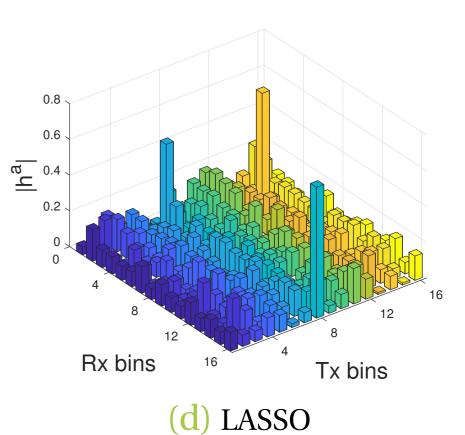
0

- 1. initialize α by choosing an *m*, compute α_m using (3)
- 2. Compute Σ and μ from (1) (which are scalers initially)
- 3. Select any *i*-th column vector of Ψ , say ψ_i
- 4. If $|q_i|^2 > s_i$ and $\alpha_i < \infty$, (ψ_i is in the model), update α_i using (3)
- 5. If $|q_i|^2 > s_i$, and $\alpha_i = \infty$, **add** ψ_i to the model, update α_i using (3)
- 6. If $|q_i|^2 \le s_i$, and $\alpha_i < \infty$, **delete** ψ_i from the model, set $\alpha_i = \infty$
- 7. If converged terminate, otherwise go to 2

Non-Bayesian Channel Estimation


- LASSO Regression:
 - ▶ Problem: ℓ_2 norm minimization problem
 - ADMM algorithm to avoid matrix inversion in each iteration
 - SCA to solve the problem

Formulation:


• ℓ_2 norm minimization problem

$$\underset{\mathbf{h}}{\text{minimize } \|\mathbf{y} - \Psi \mathbf{h}\|_{2}^{2} + \lambda \sum_{m}^{M} \log(|h_{m}| + \epsilon)$$

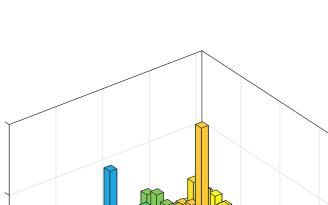


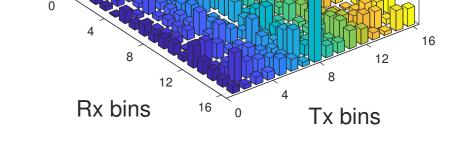
Figure: Exhaustive Search- a beam at a time¹

Stacking all D received vectors

 $\mathbf{y} = \begin{bmatrix} \mathbf{z}_1^T, \dots, \mathbf{z}_D^T \end{bmatrix}^T$ $= \underbrace{\left(\mathbf{V}^T \operatorname{conj}(\mathbf{S}(\Phi)) \otimes \mathbf{W}^H \mathbf{S}(\Theta) \right)}_{\Psi} \mathbf{h} + \mathbf{n}$

h = vec(H^ν) ∈ C^{Q²×1} is *L* sparse vector
 y ∈ C^{D²×1} is the received signal
 Ψ ∈ C^{D²×Q²} is the sensing matrix

¹ Desai, Vip, et al. "Initial beamforming for mmWave communications. " Signals, Systems and Computers, on. IEEE 48th Asilomar Conference, 2014. ADMM reformulation


minimize
$$\|\mathbf{y} - \Psi \mathbf{h}\|_2^2 + \lambda \sum_m \log(|z_m| + \epsilon)$$

subject to $\mathbf{h} = \mathbf{z}$

• Augmented Lagrangian $L_{\rho}(\mathbf{h}, \mathbf{z}, \mathbf{u}) = \lambda \sum_{i} \log(|z_{i}| + \epsilon) + \|\mathbf{y} - \Psi \mathbf{h}\|_{2}^{2} + \rho \|\mathbf{z} - \mathbf{h} + \mathbf{u}\|_{2}^{2} - \rho \|\mathbf{u}\|_{2}^{2}.$

ADMM algorithm:

initialize z^k, u^k and k = 0
Update h^{k+1} = (Ψ^HΨ + ρI)⁻¹[Ψ^H𝔅 + ρ(z^k + u^k)]
Update z^{k+1} = h^{k+1} - u^k - 2λ/ρ((z^k/(|z|²/_m+ε))))

Update u^{k+1} = u^k + z^{k+1} - h^{k+1}
Set k = k + 1
If converged terminate, otherwise go to 2

(e) OMP

Figure: Angle domain representation of the channel at SNR = 3 dB.

Conclusion:

- Two channel estimation algorithms have been proposed: Bayesian (FSBL) and non-Bayesian (LASSO with ADMM)
 Future works:
 - Grid-less approach

م 0.5

- Wideband Channel (Frequency Selective)
- Tracking the AoDs, AoAs and path gains in a mobile scenario