

Goal of the study

Non-parametric Bayesian methods have recently gained popularity in unsupervised learning. They are capable of simultaneously learning the cluster models as well as their number based on properties of a dataset. The most commonly applied models are Dirichlet process Gaussian mixture models (DPGMMs). Recently, von Mises-Fisher mixture models (VMMs) have also gained popularity in modelling high-dimensional unitnormalized features such as text documents and gene expression data. VMMs are potentially more efficient than GMMs in modeling certain speech representations such as i-vector data as they work with unitnormalized features based on cosine distance. We investigate the applicability of DPVMMs for i-vector-based speaker clustering and verification.

Von Mises-Fisher Distribution

$$\lambda^{D/2-1}$$

$$p(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{\lambda}{(2\pi)^{D/2} I_{D/2-1}(\lambda)} \exp(\lambda \boldsymbol{\mu}^{\mathsf{T}} \boldsymbol{x})$$

- x is unit normalized D dimensional data and φ is the VMF model.
- Parameters μ is the mean and λ is the concentration parameter
- $I_o(u)$ is the Bessel function of the first kind with order *v*

Dirichlet Process Mixture Models

 $\pi \mid \alpha \sim GEM(\alpha)$ $\theta_k \mid H \sim H$ $G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta = \theta_k)^{\bullet}$ k=1 $z_i \mid \pi \sim \pi$ $x_i \mid \{\theta_k\}_{k=1}^{\infty}, z_i \sim F(\theta_{z_i})$

• A Dirichlet process is a distribution over probability measures on a measurable space $\, arphi \,$ Uniquely defined by base distribution H and concentration parameter α , written as $G \sim DP(\alpha, H)$.

Gaussian

When the mixture component is Gaussian i.e. $\theta_k = \{ \mu_k, \Sigma_k \}$ representing the mean and variance parameters. We consider the conjugate prior i.e. The Normal Inverse Wishart distribution.

Von Mises-Fisher model

VMF models i.e. $\theta_k = \{ \mu_k, \lambda_k \}$ represent the mean and concentration parameters. The prior $p(\theta_k) = p(\mu_k | \lambda_k) p(\lambda_k)$, where $p(\mu_k | \lambda_k)$ is modelled by a VMF distribution and $p(\lambda_k)$ modelled by a Gamma distribution

DIRICHLET PROCESS MIXTURE MODELS FOR CLUSTERING I-VECTOR DATA

Shreyas Seshadri, Ulpu Remes and Okko Räsänen Department of Signal Processing and Acoustics, Aalto University, Finland

Variational Inference

- Approximate the analytically intractable posterior with a tractable distribution called the variational distribution.
- Chosen so that an evidence lower bound (ELBO) can be evaluated under the variational model, and the variational distribution
- parameters are determined as parameters that maximise the bound.
- Typically done by making some independence assumptions. Similar to the expectation–maximisation (EM) algorithm that iterates
- between finding the probabilities of z_i (called responsibilities) based on current the model and updating model parameters based the current responsibilities

Experiments

- The clustering experiments were conducted using DPVMM, DPGMM and k-means with cosine distance on the NIST SRE 2014 development partition that contains 600-dimensional i-vector features extracted from 4958 speakers.
- DPVMM and k-means used observations that were normalised to unit length; and DPGMM used observations that were compressed into $D = \{50, 10\}$ dimensions with PCA.
- The clustering methods were evaluated on test datasets that included $M = \{10, 100, 500, 650\}$ speakers with most observations.
- Speaker verification experiments were conducted on the complete dataset using using FASTPLDA, with PLDA parameters determined on the 650 speaker dataset.

Evaluation

Speaker Clustering

Accuracy as geometric mean of average cluster and speaker purities:

$$ACP = \frac{1}{N} \sum_{i} \frac{\left(\sum_{j} n_{ij}^2\right)}{n_i} \qquad AS$$

where n_{ii} , n_i , n_j , N are the number of utterances in cluster *i* spoken by speaker *j*, the number of utterances in cluster *I*, number of utterances spoken by speaker *j* and the total number of speakers respectively.

Speaker Verification

- Equal Error Rate: calculated at an operation point t where false acceptance and false rejection errors occur at equal rate
- *Minimum Decision Cost Function:* Calculated at point *t* where DCF(t) is minimum

 $DCF(t) = FRR(t) + 100 \times FAR(t)$

ASP	ACC	AKI	EEK	DCF
1.00	1.00	1.00	1.67	0.35
0.60	0.60	0.55	2.70	0.43
0.58	0.55	0.40	2.53	0.46
0.43	0.24	0.01	5.77	0.64