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System Model and Objective  

A, B, C,…:  
nodes in primary  wireless network 

C 

B 

A 

O: Observer, a secondary user 
in cognitive network environment 

 
To apply a Bayesian non-parametric 
model to segmenting time series of  
observed wireless node transmission  
activity in order to machine-learn  
routing patterns in an unknown 
wireless ad-hoc network, as well as 
its topology. 

Objective: 

D 

E 
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 1. Observer O is the spectrum sensing agent 

3. Observer may be another network 

2. Observer is capable of associating each  
transmission, i.e., geo-locating sources 

TDOA 

4. Observer O is the provider of transmission 
activity  observations to the learning agent 



System Model – Summary 
 We refer to the Learning Agent as Observer,  event when it is another entity or network 

utilizing the observer’s data 
 
Observer assumes a state-machine-like behavior of a primary node (PN), which is driven by 
the network inputs 
 -motivates generative model (HMM/ HSMM) 
 
 
 
 
 
 
Observer does not have prior knowledge of the observed Primary Network 
 - this motivates Bayesian non-parametric learning model  (HDP – HSMM)  
 - HDP expresses our prior beliefs about the node based on very loose 
                                                                                                                            assumptions 
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Network protocols are state-machines 

RTS CTS 
Data 

ACK RTS CTS 
Data ACK 

HDP:  Hieararchical  Dirichlet Process  

pattern 
(a hidden state?) 

time series of packet-delimited 
RF transmissions 

obtained by energy detection: 
Tx-series 



Analytical Model 
EXPECTATION:  
1. Learned states of the HDP-HSMM model will correspond to behavioral states of a 

wireless network node, and sequences thereof will correspond to activity patterns  
 

2. Utilizing these activity patterns as features for node classification (clustering) will lead 
to recognition of network routing paths, including sources and sinks of the traffic, and 
to topology recognition, including edge and hub nodes. 
 

CHALLENGES: 
Segmenting the time series of observed outputs blindly, and labeling their latent sources 
as states of an unknown Markov Chain 

 
HDP-HMM: Used for Speaker Diarization 

Key questions:  
How do we know  
Speaker 3 (S3)  
is not this? 

HDP concept applied to hidden matrices allows for learning of the number of states and  
                                                                                                                                               what they are 

How do we know  
this is S2 and not S5? 

 S1          S2       S3    S2 



HDP-HMM:  
Learning State Dynamics Non-Parametrically 

Observations: 
Tx-series 

Segment (state)  
sequence 
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𝑆𝑖:  defined by distribution of observations  𝑦𝑆𝑖  

𝜋(2): 

𝜋(3): 

𝜋(𝑖): 

∀𝜋(𝑖)  is a DP (Dirichlet Process) with prior 𝐺𝑖  
 

𝜋(𝑖)s are coupled by the same prior 𝐺𝑜  into a 
hierarchy of state transition probabilities (HDP): 
 
  Go~DP(γ, H);  Gi~DP(α, Go)  

  
H-base measure, γ – concentration parameter 

∞ 
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HDP-HMM:  
Learning State Dynamics Non-Parametrically 

𝑇 = 𝐷𝑖
𝑠

𝑖=1
 

𝐷𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠(𝜆𝑧𝑖+1) 

 
𝐷𝑖  ∼  NB(r, p) 
 
What is NB? 

𝑥= 1 +  𝑣𝑖

𝑟

𝑖=1

 

𝑃 𝑣𝑖 = 𝑘 = 𝑝
𝑘(1 − 𝑝) 

 
𝐷𝑖 ∼x 

𝑦𝑆𝑖:  2-D discrete samples described by multinomial 

prob. distribution specific to state 𝑆𝑖.  

 
1st multinomial process outputs quantized packet lengths: 

𝐿(𝑖) = 𝑄𝐿(𝐿
𝑖 ) 

2nd outputs quantized inter-packet times: 

𝐼(𝑖) = 𝑇𝑠𝑡
(𝑖)
− 𝑇𝑒𝑛𝑑

(𝑖−1)
 

𝐼(𝑖) = 𝑄𝐺(𝐼
𝑖 ) 

 
𝑄𝐺 , 𝑄𝐺  : quantization functions for packet lengths  
                                                                 and inter-packet gaps 

𝑇 0 



Inference for HMM Models 
-outline- 

– Evaluate observation sequence given the model θ = (A, B, πo) 

– Find maximum likelihood parameters of the model θ 

– Find the best fitting state sequence given your observations and your model θ 

 
– zt: state sequence (hidden) 

– yt : observation sequence (Tx-series) 

     HMM model 

      θ = (A, B, πo)  A: state-transition probabilities, B state-dependent observation probabilities 

– A = {aij}   aij = P(qt+1 = Sj | zt = Si),   1 <= i, j <= N 

– B = {bij}    bij = P(yt = vj | zt = Si),    1 <= i <= N 

     1 <= j <= M (observable alphabet) 

– π o = {π 1o … π No}    π i=P(z1 = Si)     for 1 <= i <=N 

                -initial probability of states- 

 

• Our model is more complicated  

–  {𝜃𝑖
𝑘
, 𝜆𝑖
(𝑘)
}  emission parameters (for 2-D Gaussian) and state duration parameters 

– We cannot easily integrate out parameters and create close form solutions 

– We use Gibbs sampling instead 

 

 

 



How to Learn Posterior Probability of a 

HDP HSMM Model? 

• 𝐵 ∼ 𝐺𝐸𝑀 𝛾  

• 𝜋(𝑖) ∼ 𝐷𝑃 𝛼, 𝐵 ,  for  any  𝑖 
• (𝜃𝑖 ,   𝜆𝑖 ) ∼ 𝐻 × 𝐺 ,   for  any  𝑖 (denotes state) 

• 𝑧𝑠 ∼ π
(𝑖) 

 
• 𝐻:  conjugate prior of Multinomial (Dirichlet) 

• 𝜃𝑖 = 𝜂1𝑖 , 𝜂2𝑖: Dirichlet Parameters for packet lengths and gaps 

 
• 𝐺: Beta (p),Gamma (r) (conjugate priors of Negative Binomial) 

• 𝜆𝑖  = 𝑟𝑖 , 𝑝𝑖: Negative Binomial parameters 

 
Gibbs sampling is a generic MCMC method that relies on knowing only the conditional marginal 
probabilities of the unknown parameters, e.g., the conditional probability of 𝜋 given the current 
estimate of {𝜆𝑖}, {𝜃𝑖}, and {𝑧𝑘}. 
 
∀ sampling iteration outputs for ∀ node the latest 𝜋, {𝜆𝑖}, {𝜃𝑖}, and {𝑧𝑘} 

Markov Chain Monte Carlo (MCMC) methods used to derive the posterior: 



NS3 Simulations 
Ground Truth 



NS3 Simulations 
Machine-Learned paterns 

Color-coded clusters of similar nodes obtained 
by HDP-HSMM learning of their hidden states, 
followed by A-P clustering of the states, and a 
distance metric between new state sequences 

Heat map of max cross-correlation  
between Tx-series 

misclassification due to small number 
of features, and feature selection 



A-P Clustering for Common  
State-labeling Across Nodes 
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A-P*: Affinity propagation 

* B. J. Frey and D. Dueck, “Clustering by passing messages between data points,”  

Science, vol. 315, 2007. 



Synthetic Data: Noise Effect on 
Quality of Learning in HDP HSMM  

We gradually apply measurement noise on synthesized Tx-series: 

Levels of discrete measurement noise  to multinomial samples L0-L6 

(multinomials with mean 12; L0 corresponds to no noise) 

L5 measurement noise  causes both  

duration and emission distributions  

to be incorrectly learned 
incorrectly learned state sequence 



Quantified Noise Effect on 
Quality of Learning in HDP HSMM  

Are there noise-resilient features, derived from         and       ?  
 

𝐿(𝑖)  𝐼(𝑖)  



Thanks! 

• Questions? 


