

GlobalSIP 2015

A Nonparametric Bayesian Approach to Joint Multiple Dictionary Learning with Separate Image Sources

Shaoyang Li, Xiaoming Tao, Linhao Dong, and Jianhua Lu

Department of Electronic Engineering

Tsinghua University, Beijing, China

December 16th, 2015

- 1. Research Background
- 2. Nonparametric Bayesian Model for

Multiple Dictionary Learning

- 3. Learning Strategy Based on Sampling
- 4. Experimental Results
- 5. Conclusions

• 1. Research Background

- 2. Nonparametric Bayesian Model for
 - **Multiple Dictionary Learning**
- 3. Learning Strategy Based on Sampling
- 4. Experimental Results
- 5. Conclusions

Research Background

Starting Point — Dictionary Learning

 ✓ Dictionary learning provides a framework of sparse representations for high-dimensional signals (e.g., images)
 ✓ By seeking for the closest matching dictionary, the images of interest can be represented as the superposition of small subsets of dictionary atoms

Research Background

- For the applications where image samples are extracted from multiple sources or categories
 - e.g. image patches representing textures of different animals

The image patches from different animal categories may belong to different low-dimensional subspaces or manifolds

Multiple Dictionary Learning

Research Background

Existing Bayesian approaches still represent image samples with a unified dictionary

$$x = \mathbf{D}w + \epsilon$$

$$oldsymbol{x} = \mathbf{D}^*oldsymbol{w} + oldsymbol{\epsilon} \ \mathbf{D}^* \in \{\mathbf{D}_1, \mathbf{D}_2, \mathbf{D}_3, .$$

A set of dictionaries for image samples should be optimally learned

- Problem ① for the number of dictionaries
 - Some works have introduced a clustering setting into dictionary learning
 - Implementing such a strategy have to determine a fixed number for dictionaries in advance

2015/12/11

..}

- 1. Research Background
- 2. Nonparametric Bayesian Model for

Multiple Dictionary Learning

- 3. Learning Strategy Based on Sampling
- 4. Experimental Results
- 5. Conclusions

Problem Formulation

> Discover a sparse representation spanned by the atoms :

$$egin{aligned} egin{aligned} egi$$

Basic model in the framework of Bayesian learning :

$$\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{D}_{c(i)} \mathbf{w}_{i}, \alpha_{c(i)}^{-1} \mathbf{I}_{P}),$$

$$\mathbf{D}_{c(i)} \sim \prod_{k=1}^{K} \mathcal{N}(\mathbf{0}, \frac{1}{P} \mathbf{I}_{P}),$$

$$\mathbf{w}_{i} = \mathbf{z}_{c(i)} \odot \mathbf{s}_{i}, \ \mathbf{s}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{K}),$$

$$\mathbf{z}_{i} | \mathbf{\pi}_{c} \sim \prod_{k=1}^{K} \text{Bernoulli}(\pi_{ck}), \ \forall \ i : c(i) = c,$$
2015/12/11
$$\mathbf{z}_{i} | \mathbf{u}_{c} \sim \mathbf{u}_{k=1} | \mathbf{u}_{c} = \mathbf{u}_{k=1} | \mathbf{u}_{c} = \mathbf{u}_{k=1} | \mathbf{u}_{c} = \mathbf{u}_{k=1} | \mathbf{u}_{c} = \mathbf{u}_{k} |$$

Problem Formulation Bayesian Prior ① : Dirichlet process (DP) $c(i) \sim G = \sum \xi_c \delta_{G_c}, \quad G \sim \mathcal{DP}(\eta, \{G_c\}_{c=1}^{\infty}) \implies$ Unbounded dictionary number c=1 $\boldsymbol{\xi} \sim \operatorname{GEM}(\eta), \ \eta \sim \operatorname{Gamma}(a, b)$ **Stick-breaking** $\xi_c = \rho_c \prod_{l=1}^{c-1} (1 - \rho_l), \ \rho_c \sim \text{Beta}(1, \eta)$ construction **Bayesian Prior** 2 : Hierarchical Beta process (HBP) $G_c = \sum_{k=1}^{\infty} \pi_{ck} \delta_{\phi_k} \stackrel{\text{iid}}{\sim} \mathcal{BP}(\gamma_c, H),$ Dictionary $\pi_{ck}|\gamma_c, \upsilon \sim \text{Beta}(\gamma_c \upsilon_k, \gamma_c \bar{\upsilon}_k),$ correlation priors $H = \sum_{k=1}^{\infty} \upsilon_k \delta_{\phi_k} \sim \mathcal{BP}(\lambda, H_0), \ \phi_k \stackrel{\text{iid}}{\sim} H_0,$

Problem Formulation

• **Priors for hyper-parameters:**

- 1. Research Background
- 2. Nonparametric Bayesian Model for

Multiple Dictionary Learning

3. Learning Strategy Based on Sampling

- 4. Experimental Results
- 5. Conclusions

Learning Strategy via Sampling

Sampling for the DP

(1) Posterior for c(i)

$$p(c(i) = c \mid \xi_c, \mathbf{D}_c, \boldsymbol{z}_c, \alpha_c)$$

$$\propto \xi_c \int \mathcal{N}(\boldsymbol{x}_i; \mathbf{D}_{c(i)} \operatorname{diag}(\boldsymbol{z}_{c(i)}) \boldsymbol{s}_i, \alpha_c^{-1} \mathbf{I}_P) \mathcal{N}(\boldsymbol{s}_i; \mathbf{0}, \mathbf{I}_K) \mathrm{d}\boldsymbol{s}_i$$

$$\propto \xi_c \exp \left\{ \boldsymbol{x}_i^{\mathsf{T}}(\alpha_c^{-1} \mathbf{I}_P + \widetilde{\mathbf{D}}_c^{\mathsf{T}} \widetilde{\mathbf{D}}_c)^{-1} \boldsymbol{x}_i \right\} \propto \xi_c \mathcal{N}(\boldsymbol{x}_i; \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c),$$

2 Posterior for hyper-parameters in DP

$$p(\eta|-) \propto \prod_{c=1}^{C-1} \left(\frac{\Gamma(\eta+1)}{\Gamma(1)\Gamma(\eta)} (1-\rho_c)^{\eta-1} \right) \eta^{a-1} e^{-b\eta} \\ \propto \text{Gamma} \left(\eta; a + C - 1, b - \sum_{c=1}^{C-1} (1-\rho_c) \right), \\ p(\rho_c|-) \propto \prod_{i:c(i)=c} \rho_c \prod_{i:c(i)>c} (1-\rho_c) (1-\rho_c)^{\eta-1} \\ \propto \text{Beta} \left(\rho_c; 1 + \sum_{i=1}^N \mathbb{I}(c(i)=c), \eta + \sum_{i=1}^N \mathbb{I}(c(i)>c) \right),$$

14

Learning Strategy via Sampling

Sampling for the HBP

(1) Integrating out $\{ m{\pi}_c \}_{c=1}^C$

$$p(\{\boldsymbol{z}_{c(i)}\}_{i=1}^{N}, \boldsymbol{v}) = p(\boldsymbol{v}) \prod_{i} \int_{\boldsymbol{\pi}_{c(i)}} p(\boldsymbol{z}_{c(i)} | \boldsymbol{\pi}_{c(i)}) p(\boldsymbol{\pi}_{c(i)} | \boldsymbol{v}) d\boldsymbol{\pi}_{c(i)}$$
$$= \prod_{k=1}^{K} p\left(\upsilon_{k} | \{\upsilon_{l}\}_{l=1}^{k-1}\right) \times \prod_{c=1}^{C} \prod_{k=1}^{K} \frac{\Gamma(\gamma_{c})}{\Gamma(\gamma_{c}+N_{c})} \times \left(\sum_{q_{ck}=1}^{N_{ck}} \begin{bmatrix} N_{ck} \\ q_{ck} \end{bmatrix} (\gamma_{c}\upsilon_{k})^{q_{ck}}\right) \times \left(\sum_{r_{ck}=1}^{\overline{N}_{ck}} \begin{bmatrix} \overline{N}_{ck} \\ r_{ck} \end{bmatrix} (\gamma_{c}-\gamma_{c}\upsilon_{k})^{r_{ck}}\right),$$

(2) Introducing auxiliary variables

$$p(v_k|-) \propto v_k^{\lambda+\sum_c q_{ck}-1} \bar{v}_k^{\sum_c l_{ck}} \mathbb{I}(\beta_{k+1} \leq \beta_k \leq \beta_{k-1}),$$

$$p(q_{ck}|\boldsymbol{q}^{-(ck)}, \boldsymbol{v}, -) \propto \begin{bmatrix} N_{ck} \\ q_{ck} \end{bmatrix} (\gamma_c v_k)^{q_{ck}},$$

$$p(r_{ck}|\boldsymbol{r}^{-(ck)}, \boldsymbol{v}, -) \propto \begin{bmatrix} \overline{N}_{ck} \\ r_{ck} \end{bmatrix} (\gamma_c - \gamma_c v_k)^{r_{ck}},$$

Learning Strategy via Sampling

Sampling for dictionary atoms

$$p(\mathbf{D}_{pc}|-) \propto \mathcal{N}\left(\mathbf{D}_{pc}; \alpha_{c} \Omega \operatorname{diag}(\boldsymbol{z}_{c})(\sum_{i:c(i)=c} x_{ip} \boldsymbol{s}_{i}), \Omega\right),$$

$$p(\boldsymbol{s}_{i}|c(i), -) \propto \mathcal{N}\left(\boldsymbol{s}_{i}; \alpha_{n} \boldsymbol{\Lambda}_{c(i)} \widetilde{\mathbf{D}}_{c}^{\mathsf{T}} \boldsymbol{x}_{i}, \boldsymbol{\Lambda}_{c(i)}\right),$$

$$p(\alpha_{c}|-) \propto \operatorname{Gamma}\left(\alpha_{c}; g + \frac{P}{2} \sum_{i=1}^{N} \mathbb{I}(c(i) = c),$$

$$h + \frac{1}{2} \sum_{i:c(i)=c} \|\boldsymbol{x}_{i} - \mathbf{D}_{pc} \operatorname{diag}(\boldsymbol{z}_{c}) \boldsymbol{s}_{i}\|_{2}^{2}\right),$$

Advantages

 In every sampling steps, obtained posteriors still subject to original distribution types
 No assumptions or approximations are introduce in the sampling procedures

- 1. Research Background
- 2. Nonparametric Bayesian Model for
 - **Multiple Dictionary Learning**
- 3. Learning Strategy Based on Sampling
- 4. Experimental Results
- 5. Conclusions

Experimental Results

Evaluations on the real dataset NUS-WIDE^[1]:

(a) Cat

(b) Elephant

(c) Hawk

(d) Whale

(e) Zebra

- Experiment setup:
 - A subset involving 5 kinds of animals cat, elephant, hawk, whale, and zebra
 - ***** The category **number** is **unknown** before inferencing the model
 - The parameters in the Bayesian model are initialized
- [1] T. S. Chua, et.al., "NUS-WIDE: A real-world web image database from National University of Singapore," ACM International Conference on Image and Video Retrieval, no. 48, pp. 1–9, Jul. 2009
 2015/12/11

Experimental Results

Dictionary Learning with Training Images

The top seven frequently used dictionaries

The usage probability of the multiple learned dictionaries

Experimental Results

Image CS Recovery for Testing Dataset

One proxy for the multiple learned dictionaries

-	-			-						
				TAE	BLE I					
COM	MPARI	SONS OF	THE RE	ELATIV	E REC	ONSTR	UCTIC	N ERRO	DR W	ITH
TES	STING	IMAGES	FROM I	DIFFER	ENT C	CATEGO	RIES V	VERSUS	M/	P.

	M/P		Cat	Elephant	Hawk	Whale	Zebra		
			Testing	Testing	Testing	Testing	Testing		
	25%	BCS	0.2049	0.2012	0.1268	0.2066	0.2456		
		BPFA	0.1168	0.1380	0.1015	0.1263	0.1531		
		c-JDL	0.1005	0.1190	0.0875	0.1025	0.1279		
	35%	BCS	0.1651	0.1825	0.1138	0.1594	0.1950		
		BPFA	0.1029	0.1184	0.0848	0.1120	0.1298		
		c-JDL	0.0857	0.1020	0.0752	0.0871	0.1118		
	45%	BCS	0.1457	0.1643	0.1019	0.1463	0.1727		
		BPFA	0.0996	0.1107	0.0798	0.1007	0.1209		
		c-JDL	0.0785	0.0933	0.0697	0.0801	0.1035		
	55%	BCS	0.1254	0.1643	0.1019	0.1463	0.1588		
		BPFA	0.0900	0.1072	0.0759	0.0988	0.1138		
		c-JDL	0.0666	0.0791	0.0590	0.0676	0.0948		
2015/12/11									

- 1. Research Background
- 2. Nonparametric Bayesian Model for
 - **Multiple Dictionary Learning**
- 3. Learning Strategy Based on Sampling
- 4. Experimental Results

• 5. Conclusions

Conclusions

- A nonparametric Bayesian approach to jointly learning multiple dictionaries for multiple image sources.
 - By introducing DP and HBP, the proposed model can infer the appropriate dictionary number from the image data and characterize the dictionary correlations
 - An accurate inference engine for our model by utilizing an efficient Gibbs sampler in combination with a slice sampler based on auxiliary variables
 - Proposed method shows performance enhancements over the existing Bayesian learning approach to reconstructing images from multiple sources

