
Generation of Correlated PSK Waveforms Using Complex Gaussian Random Variables
Seifallah Jardak? Sajid Ahmed† Mohamed-Slim Alouini?

? Computer, Electrical, Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia,
†Electrical Engineering Department, Information Technology University (ITU), Lahore, Pakistan.

Objectives

•Derive the closed-form relationship between the cross-correlation of complex
Gaussian random variables (RVs) and finite alphabets.
•Generate correlated PSK waveforms using complex Gaussian RVs
• Study the performance of correlated PSK signals in matching the desired
transmit beampattern for the MIMO radar application

Introduction

In MIMO radar beamforming, carefully designed correlated signals are transmitted from
an array of collocated antennas to create constructive interference in the region of interest
and destructive interference elsewhere. For practical reasons, the synthesized waveforms
should have finite alphabets and low peak-to-average-power-ratio (PAPR).
Several works focused on designing infinite alphabet signals to match the desired beam-
pettern. Besides, the authors in [1] designed finite alphabet waveforms drawn from
conventional modulation schemes. The proposed method maps easily generated real
Gaussian random variables (RVs) onto phase-shift-keying (PSK) or pulse-amplitude-
modulation (PAM) symbols.
The main contribution of this work is to ameliorate the performance of higher PSK
symbols by employing complex Gaussian RVs instead. This work relies on a new mapping
function, better suited for the design of PSK symbols. The derived relationship between
the correlation of complex Gaussian RVs and PSK symbols approaches the identity
function and improves the beampattern matching performance.

Problem Formulation

Consider a uniform linear array of N collocated antenna elements with half wavelength
inter-element spacing. The received power at an angle θ is given by P (θ) = eH(θ)Re(θ),
where R is the covariance matrix of the transmitted waveforms and e(θ) is the antenna’s
steering vector. Consequently, matching a desired transmit beampattern consists in
designing signals with proper correlation properties.
Once R is synthesized, a trivial waveform solution can be generated using Gaussian RVs
as follows V = R1/2V , where V ∈ CN×L is a matrix of zero mean and unit variance
complex Gaussian RVs. Although they are easily generated, Gaussian signals do not
satisfy practical constraints. Indeed, they are not drawn from a finite alphabet and
their PAPR, defined as PAPR(vn) = maxl|vn(l)|2

1
L

L∑
l=1
|vn(l)|2

, is quite high.

For these reasons, the easily generated Gaussian signals are mapped into constant mod-
ulus PSK symbols. This operation surely affects the correlation properties of the signal.
Next, the relationship between the correlation of Gaussian RVs and PSK waveforms will
be developed.
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Figure 1:Illustration of the mapping function f .

Design covariance matrix R

Apply an element-
wise function f̃−1

to construct Rg

Easily generate com-
plex Gaussian RVs

Apply a mapping function
f to transform Gaussian
RVs onto PSK wave-

forms with covariance R

Figure 2:Illustration of the process to generate correlated PSK symbols
using normal random variables.
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Figure 3:Relationship between the cross-correlation of Gaussian RVs and
various modulation schemes. The dotted black graph corresponds to the
identity function included for reference.

2 4 [1] 8 [1] 4 8 512 4-PAM SQP
20

25

30

35

40

PSK Modulation Schemes

M
S
E

Figure 4:Beampattern matching performance of various PSK modulation
schemes. SQP bar corresponds to the MSE achieved by the optimal
covariance matrix.

PSK Waveform Generation

Let f̃ be the relationship between the cross-correlation of complex Gaussian RVs ρpq
and finite alphabets ψpq. To express it as a polynomial function of ρpq, we extended the
work in [2] to cover the case of complex Gaussian RVs. Using the physicists’ Hermite
polynomials Hn(·), the general expression can be reformulated as

ψpq = f̃ (ρpq) =
∫
C

∫
C
wpw

∗
q p(vp, vq, ρpq)dvpdvq,

= 1
π2

+∞∑
n=0

+∞∑
m=0

ρn+m
pq

2n+mn!m!
×
∣∣∣∣∫∫R2

f (x, y)Hn(x)Hm(y)e−x2e−y2
dxdy

∣∣∣∣2 . (1)

There are numerous methods to convert Gaussian RVs into PSK symbols. The most
straightforward way to create L-PSK waveforms is to assign a unique symbol to each
region using the following mapping function

f (x, y) = exp
(
j
π

L
(2l + 1)

)
, if x + jy ∈

[
2πl
L
,
2π(l + 1)

L

]
, (2)

where l = −L
2 ,−

L
2 + 1, · · · , L2 − 1 and · returns the phase of the complex number.

Thus, by applying the above mapping function, the general Taylor expansion of the
relationship f̃ between the cross-correlation of complex Gaussian RVs and the generated
L-PSK symbols is expressed as

ψpq = 8
π

+∞∑
n=0

+∞∑
m=0

ρ2n+2m+1
pq

22n+2m+1(2n + 1)!(2m)!

(
(2m + 2n)!
(m + n)!

)2

×∣∣∣∣∣∣
L/4−1∑
l=0

cos
(
π

L
(2l + 1)

)(
In,m

(
2π(l + 1)

L

)
− In,m

(
2πl
L

))∣∣∣∣∣∣
2

,

(3)

where In,m(α) = cos2m(α) sin2n+1(α).

Examples and Relation to Previous Work

•Mapping complex Gaussian RVs into BPSK or QPSK signals results in the same
relationship defined as

ψpq = 2
π

asin (ρpq) . (4)

•Mapping complex Gaussian RVs into 8-PSK signals results in the below relationship

ψpq = 8
π

+∞∑
n=0

+∞∑
m=0

ρ2n+2m+1
pq
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π
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√
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ρpq√

2

))
(5)

Simulation Results

The complex Gaussian RVs are mapped into different L-PSK modulations. Their re-
spective correlation functions f̃ are illustrated in Fig. 3. For comparison purposes, a
selection of previous PAM and PSK results are also included. Contrarily to the previous
work, it can be noticed that, as the number of alphabets increases, the relationship f̃
approaches the identity function.
Fig. 4 compares the MSE between a desired beampattern φ and the designed one for
different modulation schemes. For this purpose, the region of interest is set to [−30◦, 30◦]
and the optimized cost function is defined as MSE =

∥∥∥eH(θ)Re(θ)− φ(θ)
∥∥∥2
. It can be

noticed that 2-PSK and 4-PSK waveforms realize comparable MSE since they share the
same correlation relationship. However, the performance of 8-PSK and 512-PSK signals
produce a significant improvement.

Conclusion

This work proposed a new method to generate correlated PSK symbols using complex
Gaussian RVs. The general relationship between the correlation of Gaussian and finite
waveforms is derived in closed form and presented as a Taylor series. We also discussed
how the newly developed results are related to the previous work [1]. Due to limited
space, we did not discuss in details the performance of the proposed waveforms for
matching the desired beampattern. This topic, along with few other proofs, will be
discussed in the full version of this manuscript.
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