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FWI: Big data challenge

e Extract the most from seismograms (full data) with the best physics
(wave equations) using the most efficient approach (efficient
optimization).

* FWI is a data-driven imaging technique as billions of data points are
involved in the computation.
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FWI: a data-driven inversion
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FWI Consider the optimization problem

1
E(m) = inobs — dcalH% + AJ (m)

- lll-conditioned problem

It is often the case that first-order methods return a solution
far from the minimizer.

- Second-order methods

Most second-order algorithms prove to be more robust to ill conditioning. By using
the curvature information, second-order methods properly rescale the gradient and enjoy
fast local convergence.



Newton’s method

* Newton's method is an extremely powerful technique—in general
the convergence is quadratic.

* The Newton's method is used to get the optimal model perturbation
through the n(ym ;. equation:
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and then update the velocity model according to

my 1 = my — ap[H(myg )| g

where a, 1s the learning rate.
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Hessian
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Number of parameters involved:
10° to 107 unknowns in 2D FWI



Realization of the Hessian at certain receivers
and frequencies

N
H(mk) = ZAT(mA)As(mA) + Q(mk)

Forming the Hessian is expensive, which costs O (N (N,N,.)#) and solving the
normal equation costs 0((NZNx)3).



Remedy

N
* Idea: Sub-sample only a few terms, say s, from 2 AsmIA ) \without

forming them, to form H(my,) so that the cost can be reduced to
O(S(Nsz)z)-

* When N, N, is large, use the iterative solver such as Conjugate
Gradient to solve the normal equation.



Non-uniform sampling strategies

¢ Ieverage Scores sampling
e For A € R™% the i-th leverage scores of A is

:(A) = a; (A"A)'a,

Sampling probability ; = 1;

* row horm squares sampling
Sampling probability ||Az||2F
m, —
¢ A%




Numerical experiments

* 2D SEG/EAGE overthrust model

e 801 x 187 grid cells in a 2-D section with 25 m horizontal and vertical grid

intervals

* There are 100 sources and 100 receivers laid on the surface, which are spread
out with 25 m spatial interval.

* A multi-scale inversion approach is adopted in our numerical experiments in

frequency bands 0.5 -4 Hz in every 0.5 Hz.
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Conclusion

* An efficient Sub-Sampled Newton (SSN) method to solve complex
non-linear system guided by physical laws with application to FWI
problem.

* SSN significantly reduces the computational complexity while
preserving a fast convergence property, by using the non-uniform
subsampling techniques.

* SSN captures the important information in the second order term
thus having a rapid rate of convergence.



Future Work

* Efficient sampling algorithm in forward modeling

* Distributed sampling algorithm
* GPU accelerated sub-sampled Newton's method



