Large Scale Randomized Learning Guided by Physical Laws with Applications in Full Waveform Inversion

Rui Xie, *Fangyu Li**, Zengyan Wang, and WenZhan Song
University of Georgia
2018/11/27

FWI: Big data challenge

• Extract the most from seismograms (full data) with the best physics (wave equations) using the most efficient approach (efficient optimization).

• FWI is a data-driven imaging technique as billions of data points are involved in the computation.

FWI: a data-driven inversion

Initial velocity model m_0

$$\left(\boldsymbol{m}(\boldsymbol{x},\omega) + \nabla^2\right) u_{\omega}(\boldsymbol{x}) = -f_{\omega}(\boldsymbol{x}_s)$$

Forward Modeling

Wave equation Finite differences

Update velocity model

$$\mathbf{m}_{k+1} = \mathbf{m}_k - \alpha_k [\mathbf{H}(\mathbf{m}_k)]^{-1} \mathbf{g}_k$$

Calculated Data

 \mathbf{d}_{cal}

Observed Data

 \mathbf{d}_{obs}

Solve Normal Equation:

$$\mathbf{H}_k \delta \boldsymbol{m}_k = -\mathbf{g}_k$$

Calculate model update

$$\mathbf{g}_k \triangleq \partial E(\mathbf{m}_k)/\partial \mathbf{m}$$

$$\mathbf{H}_k \triangleq \partial^2 E(\mathbf{m}_k)/\partial \mathbf{m}^2$$

$$E(\mathbf{m}) = \frac{1}{2} ||\mathbf{d}_{obs} - \mathbf{d}_{cal}||_2^2 + \lambda \mathcal{J}(\mathbf{m})$$

Calculate misfit

FWI Consider the optimization problem

$$E(\mathbf{m}) = \frac{1}{2} ||\mathbf{d}_{obs} - \mathbf{d}_{cal}||_2^2 + \lambda \mathcal{J}(\mathbf{m})$$

- Ill-conditioned problem

It is often the case that first-order methods return a solution far from the minimizer.

- Second-order methods

Most second-order algorithms prove to be more robust to ill conditioning. By using the curvature information, second-order methods properly rescale the gradient and enjoy fast local convergence.

Newton's method

- Newton's method is an extremely powerful technique—in general the convergence is quadratic.
- The Newton's method is used to get the optimal model perturbation through the $n \delta m_k$ equation:

$$\mathbf{H}_k \delta \boldsymbol{m}_k = -\mathbf{g}_k$$

and then update the velocity model according to

$$\mathbf{m}_{k+1} = \mathbf{m}_k - \alpha_k [\mathbf{H}(\mathbf{m}_k)]^{-1} \mathbf{g}_k$$

where α_k is the learning rate.

$$\mathbf{g}_{k} = \frac{\partial E(\mathbf{m}_{k})}{\partial \mathbf{m}} = -\Re \left\{ \left[\frac{\partial \mathcal{F}(\mathbf{m}_{k})}{\partial \mathbf{m}} \right]^{\dagger} (\mathbf{d}_{obs} - \mathcal{F}(\mathbf{m}_{k})) \right\}$$

$$= \Re \left\{ \mathbf{J}_{k}^{\dagger} \delta \mathbf{d}_{k} \right\}, \qquad \text{where } \delta \mathbf{d}_{k} = \mathbf{d}_{obs} - \mathcal{F}(\mathbf{m}_{k})$$

Gradient

Hessian

$$\mathbf{H}_{k} = \frac{\partial^{2} E(\mathbf{m}_{k})}{\partial \mathbf{m}^{2}} = \Re \left\{ \mathbf{J}_{k}^{\dagger} \mathbf{J}_{k} + \frac{\partial \mathbf{J}_{k}^{\dagger}}{\partial \boldsymbol{m}^{T}} [\delta \mathbf{d}_{1}^{*} \cdots \delta \mathbf{d}_{k}^{*}] \right\}$$

Number of parameters involved: $10^5 to 10^7$ unknowns in 2D FWI

Realization of the Hessian at certain receivers and frequencies

$$\mathbf{H}(\mathbf{m}_k) = \sum_{s=1}^{N} \mathbf{A}_s^T(\mathbf{m}_k) \mathbf{A}_s(\mathbf{m}_k) + \mathbf{Q}(\mathbf{m}_k)$$

Forming the Hessian is expensive, which costs $O(N(N_zN_x)^2)$ and solving the normal equation costs $O((N_zN_x)^3)$.

Remedy

• Idea: Sub-sample only a few terms, say s, from $\sum_{s=1}^{n} \mathbf{A}_{s}^{T}(\mathbf{m}_{k}) \mathbf{A}_{s}(\mathbf{m}_{k})$, without forming them, to form $\widetilde{\mathbf{H}}(\mathbf{m}_{k})$ so that the cost can be reduced to $O(s(N_{z}N_{x})^{2})$.

• When N_zN_x is large, use the iterative solver such as Conjugate Gradient to solve the normal equation.

Non-uniform sampling strategies

- leverage scores sampling
 - For $A \in \mathbb{R}^{n \times d}$, the i-th leverage scores of A is

$$au_i(\mathbf{A}) = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^\dagger \mathbf{a}_i$$

Sampling probability $\pi_i = \tau_i$

row norm squares sampling

Sampling probability

$$\pi_i = rac{\|\mathbf{A}_i\|_F^2}{\|\mathbf{A}\|_F^2}$$

Numerical experiments

- 2D SEG/EAGE overthrust model
 - 801 × 187 grid cells in a 2-D section with 25 m horizontal and vertical grid intervals
 - There are 100 sources and 100 receivers laid on the surface, which are spread out with 25 m spatial interval.
 - A multi-scale inversion approach is adopted in our numerical experiments in frequency bands 0.5 4 Hz in every 0.5 Hz.

Overthrust model (true) & Initial velocity model m_0

Convergence comparison of different methods.

Conclusion

- An efficient Sub-Sampled Newton (SSN) method to solve complex non-linear system guided by physical laws with application to FWI problem.
- SSN significantly reduces the computational complexity while preserving a fast convergence property, by using the non-uniform subsampling techniques.
- SSN captures the important information in the second order term thus having a rapid rate of convergence.

Future Work

- Efficient sampling algorithm in forward modeling
- Distributed sampling algorithm
- GPU accelerated sub-sampled Newton's method