DISTRIBUTED LINEAR BLIND SOURCE SEPARATION OVER WIRELESS SENSOR NETWORKS WITH ARBITRARY CONNECTIVITY PATTERNS

S.R. MIR ALAVI AND W. BASTIAAN KLEIJN School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

INTRODUCTION

- Communication is performed by transmitting signals through a medium
- Signals can be mixed in the transport medium before they are received
- The operation of separating source signals without prior information about the sources is referred to as blind source separation
- Wireless sensor networks (WSN) form a natural platform for effective, low cost BSS
 - facilitate a good coverage of an area
 - low deployment cost
- In the context of sensor networks, research on blind source separation can be divided into:
 - centralized approaches
 - de-centralized approaches

PROBLEM

- In centralized approaches, the recordings of all sensors (microphones) are transmitted to a centralized processor. Drawbacks:
 - lack of scalability
 - high power consumption
 - the need for hardware that can transmit over long distances
- Drawbacks of the existing de-centralized approaches include:
 - the need for a full connectivity pattern over the graph of the network
 - high computational load

CONTRIBUTIONS

- Developing a distributed BSS algorithm with the following features:
 - applicable to any connected graph with any connectivity patterns
 - low computational load
 - low power consumption

ADAPTIVE LINEAR BSS

• Linear generative model:

$$b_{N \times 1}(t) = A_{N \times M} s_{M \times 1}(t) + n_{N \times 1}(t)$$
 (1)

• Likelihood function:

$$\mathbf{p}(b|A) = \int \mathbf{p}(b|s, A) \,\mathbf{p}(s) ds \qquad (2$$

• Natural gradient learning rule:

$$\Delta A \propto A A^T \frac{\partial}{\partial A} \log \mathbf{p}(b|A) \tag{3}$$

or
$$A(t+1) = A(t) - \mu A(t)F[y(t)]$$

where $F[y(t)] = I - \psi[y(t)]y(t)^T$, $y(t) = A^{-1}(t)b(t)$ and

$$\psi[y] = [\psi_1[y_1], \dots, \psi_M[y_M]]^T$$

$$\psi_i[y_i] = -\frac{d}{dy_i} \ln p(y_i)$$
(4)

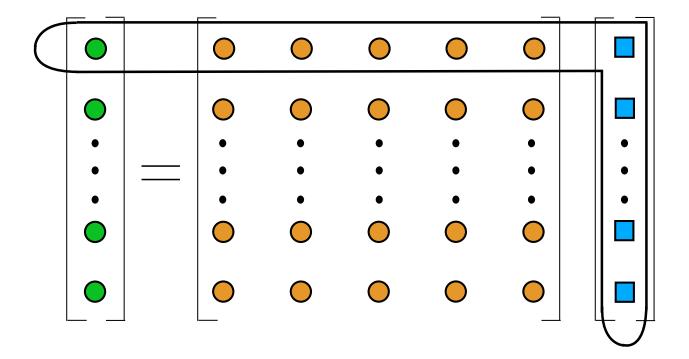
• A more numerically stable algorithm:

$$F[y(t)] = \Lambda(t) - \psi[y(t)]y(t)^T$$
(5)

where $\Lambda(t) = \text{diag}[\text{diag}[\psi[y(t)]y(t)^T]]$

SPLIT OBJECTIVE FUNCTION

- Finding $y(t) = A^+(t)b(t)$ is equivalent to finding y that minimizes $f(y) = \frac{1}{2} ||A(t)y - b(t)||_2^2$ Splitting the objective function on a row by row basis as $f_i(y^{\{i\}}) = \frac{1}{2} \|A_i(t)y^{\{i\}} - b_i(t)\|_2^2$
- Visualization of b(t) = A(t)y(t) and data splitting:

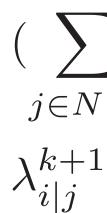


• Preserving the above splitting structure the update $A(t+1) = A(t) - \mu A(t)F[y(t)]$ can be carried out in parallel on a row by row basis.

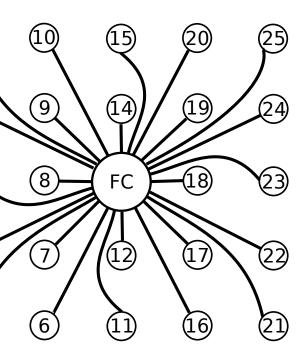
$${}_{\{i,k-i)}$$

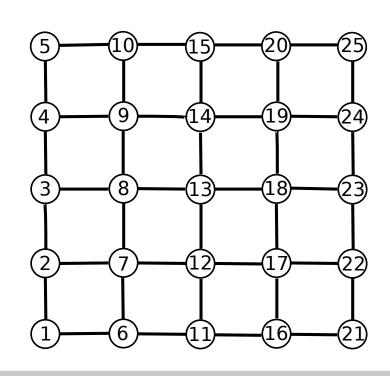
$$z^{k}$$

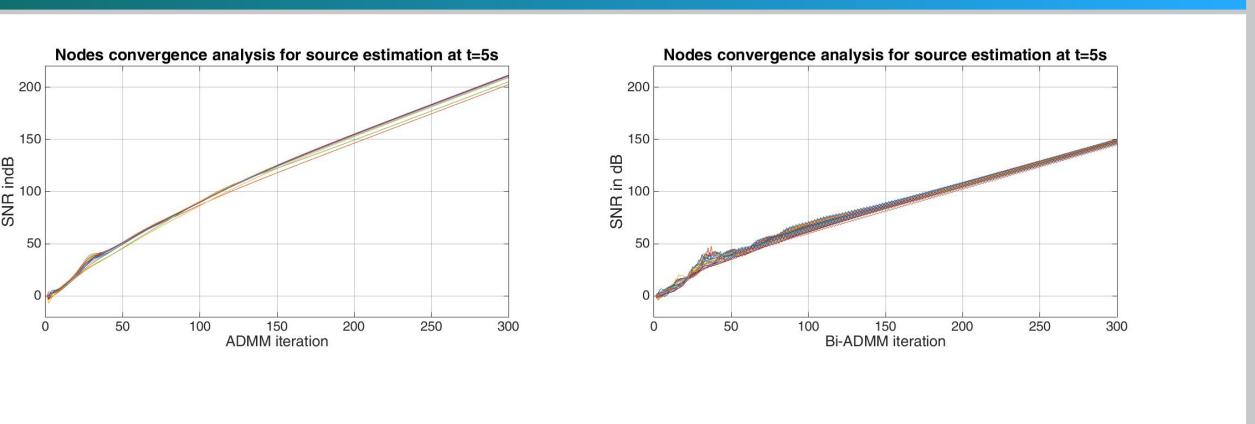
$$u_i^n$$



GRAPHICAL MODELS AND CONSENSUS ACHIEVEMENTS







STRIBUTED PROCESSING

- Distributed processing of source estimation:
- Fusion-center approach

$$\min_{y} \sum_{i=1}^{N} f_i(y^{\{i\}}) \quad \text{s.t.} \quad y^{\{i\}} - z = 0 \quad (6)$$

ADMM solution:

$$\begin{aligned} & +1 \} = \arg\min_{y^{\{i\}}} (f_i(y^{\{i\}}) + \frac{\rho}{2} || y^{\{i\}} - z^k + u_i^k ||_2^2) \\ & z^{k+1} = \frac{1}{N} \sum_{i=1}^N (y^{\{i,k+1\}} + u_i^k) \\ & z^{k+1} = u_i^k + y^{\{i,k+1\}} - z^{k+1} \end{aligned}$$

$$(7)$$

• De-centralized approach Over a graph $G = (\nu, \varepsilon)$

$$\min_{y} \sum_{i \in \nu} f_i(y^{\{i\}}) \text{ s.t. } y^{\{i\}} = y^{\{j\}} \,\forall (i,j) \in \varepsilon$$
(8)

Bi-ADMM solution:

$$\begin{aligned} &+1\} = \arg\min_{y^{\{i\}}} [f_i(y^{\{i\}}) - y^{\{i\}}^T \\ &\sum_{(i)} \operatorname{sign}(j-i)\lambda_{j|i}^k) + \sum_{j \in N(i)} \frac{1}{2} ||y^{\{i\}} - y^{\{j,k\}}||_2^2 \\ &= \lambda_{j|i}^k + \gamma \operatorname{sign}(j-i)(y^{\{j,k\}} - y^{\{i,k+1\}}) \end{aligned}$$

$$(9)$$

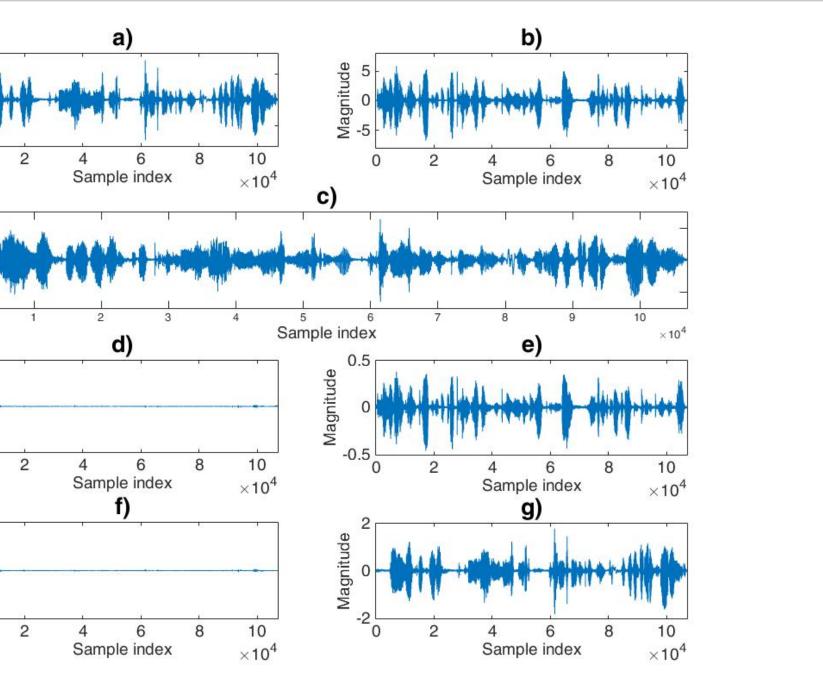
- 2. Distributed processing of the parameter update:
 - Both fusion-center and de-centralized approach update the parameters locally as:

$$A_i(t+1) = A_i(t) - \mu A_i(t) F[y^{\{i,k\}}(t)]$$
(10)

Sp	E	E		2]
		Magnitude	5 0 -5 0		
		Magnitude	2 0 -2 0	-	
		Magnitude	1 0 -1 0		
		Magnitude	1 0 -1 0		
	-				
PO		MS	Ε		
	usic				
SI	N		R		
		2 4 6 8	×		0
Co		V	(
		Т	W	0)
			tł		
			h		
		I	h	e	ļ

TE WHARE WĀNANGA O TE ŪPOKO O TE IKA A MĀU

H SIGNALS SEPARATION



CONSUMPTION

	1×10^{-4}	4×10^{-6}	3×10^{-7}	1×10^{-8}
ed	375ϵ	675ϵ	1025ϵ	1825ϵ
er	1296ϵ	2376ϵ	3240ϵ	5400ϵ

ACROSS NOISE LEVELS

	Fusion-center		De-centralized		Centralized	
$\frac{2}{r}$	S1	S2	S1	S2	S1	S2
	59.39	21.73	49.80	21.60	49.98	21.71
0^{-3}	22.65	15.21	22.63	15.20	22.59	14.94
0^{-3}	19.79	11.77	19.79	11.76	19.82	12.02
0^{-3}	18.08	9.84	18.09	10.01	18.04	10.31
0^{-3}	16.83	8.39	16.84	8.51	16.82	9.16

LUSIONS

distributed adaptive linear BSS algons were proposed

- y benefit from fully shared computation de-centralized algorithm:
- can be implemented over any graph is scalable
- requires low transmission power