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INTRODUCTION
• Communication is performed by transmit-

ting signals through a medium
• Signals can be mixed in the transport

medium before they are received
• The operation of separating source signals

without prior information about the sources
is referred to as blind source separation
• Wireless sensor networks (WSN) form a

natural platform for effective, low cost BSS

– facilitate a good coverage of an area

– low deployment cost

• In the context of sensor networks, research
on blind source separation can be divided
into:

– centralized approaches

– de-centralized approaches

PROBLEM
• In centralized approaches, the recordings of

all sensors (microphones) are transmitted to
a centralized processor. Drawbacks:

– lack of scalability

– high power consumption

– the need for hardware that can transmit
over long distances

• Drawbacks of the existing de-centralized ap-
proaches include:

– the need for a full connectivity pattern
over the graph of the network

– high computational load

CONTRIBUTIONS
• Developing a distributed BSS algorithm with

the following features:

– applicable to any connected graph with
any connectivity patterns

– low computational load

– low power consumption

ADAPTIVE LINEAR BSS
• Linear generative model:

bN×1(t) = AN×MsM×1(t) + nN×1(t) (1)

• Likelihood function:

p(b|A) =

∫
p(b|s,A) p(s)ds (2)

• Natural gradient learning rule:

4A ∝ AAT ∂

∂A
log p(b|A)

or A(t+ 1) = A(t)− µA(t)F [y(t)]
(3)

where F [y(t)] = I − ψ[y(t)]y(t)T ,
y(t) = A−1(t)b(t) and

ψ[y] = [ψ1[y1], ..., ψM [yM ]]T

ψi[yi] = − d

dyi
ln p(yi)

(4)

• A more numerically stable algorithm:

F [y(t)] = Λ(t)− ψ[y(t)]y(t)T (5)

where Λ(t) = diag[diag[ψ[y(t)]y(t)T ]]

SPLIT OBJECTIVE FUNCTION

• Finding y(t) = A+(t)b(t) is equivalent to
finding y that minimizes
f(y) = 1

2 ||A(t)y − b(t)||22
Splitting the objective function on a row by
row basis as fi(y{i}) = 1

2‖Ai(t)y
{i}−bi(t)‖22

• Visualization of b(t) = A(t)y(t) and data
splitting:

• Preserving the above splitting structure the
updateA(t+1) = A(t)−µA(t)F [y(t)] can be
carried out in parallel on a row by row basis.

GRAPHICAL MODELS AND CONSENSUS ACHIEVEMENTS
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DISTRIBUTED PROCESSING
1. Distributed processing of source estimation:

• Fusion-center approach

min
y

N∑
i=1

fi(y
{i}) s.t. y{i} − z = 0 (6)

ADMM solution:

y{i,k+1} = arg min
y{i}

(fi(y
{i}) +

ρ

2
||y{i} − zk + uki ||22)

zk+1 =
1

N

N∑
i=1

(y{i,k+1} + uki )

uk+1
i = uki + y{i,k+1} − zk+1

(7)

• De-centralized approach
Over a graph G = (ν, ε)

min
y

∑
i∈ν

fi(y
{i}) s.t. y{i} = y{j} ∀(i, j) ∈ ε

(8)
Bi-ADMM solution:

y{i,k+1} = arg min
y{i}

[fi(y
{i})− y{i}

T

(
∑

j∈N(i)

sign(j − i)λkj|i) +
∑

j∈N(i)

1

2
||y{i} − y{j,k}||22]

λk+1
i|j = λkj|i + γsign(j − i)(y{j,k} − y{i,k+1})

(9)

2. Distributed processing of the parameter up-
date:
Both fusion-center and de-centralized ap-
proach update the parameters locally as:

Ai(t+ 1) = Ai(t)− µAi(t)F [y{i,k}(t)] (10)

SPEECH SIGNALS SEPARATION

POWER CONSUMPTION
MSE 1 × 10−4 4 × 10−6 3 × 10−7 1 × 10−8

De-centralized 375ε 675ε 1025ε 1825ε

Fusion-center 1296ε 2376ε 3240ε 5400ε

SINR ACROSS NOISE LEVELS
Fusion-center De-centralized Centralized

σ2n S1 S2 S1 S2 S1 S2
0 59.39 21.73 49.80 21.60 49.98 21.71

2 × 10−3 22.65 15.21 22.63 15.20 22.59 14.94
4 × 10−3 19.79 11.77 19.79 11.76 19.82 12.02
6 × 10−3 18.08 9.84 18.09 10.01 18.04 10.31
8 × 10−3 16.83 8.39 16.84 8.51 16.82 9.16

CONCLUSIONS
• Two distributed adaptive linear BSS algo-

rithms were proposed
• They benefit from fully shared computation
• The de-centralized algorithm:

– can be implemented over any graph

– is scalable

– requires low transmission power


