A POPULATION OF EAGLES, HORSES, AND MOLES: PERCEPTUAL SENSITIVITY TO WATERMARK DISPARITY COHERENCE

Hasan Sheikh Faridul and <u>Gwenaël Doërr</u> Technicolor R&D France

Agenda

- Introduction, incl. a refresher on stereo video watermarking
- Perceptual evaluation protocol
- Preference profiles of the observers
- Stereo video watermarking and content dependency
- Take away lessons

Context

Renewed interest in the late 2000's

- Potential for increased immersive experience
- "Camcord piracy does not work with 3D"

Status after the buzz

- Digital cinema vs. home entertainment
- 3D movie projections have been pirated

Watermarking challenges with stereo video

- Reuse off-the-shelf recipes for the communications layer
- Accommodate for the specificities of the content
 - Perceptual impairment due to depth degradation
 - Robustness to view synthesis

SS Watermarking for Stereo Video

A single embedding equation... ... with three alternate incarnations

$$\mathbf{v}_{L|R}^{(w)} = \mathbf{v}_{L|R} + \alpha . \, \mathbf{w}_{L|R}, \qquad \begin{aligned} \mathbf{w}_{L|R} \sim N(0,1) \\ \alpha > 0 \end{aligned}$$

1.2.3.Same watermarkDifferent watermarksDisparity-coherent watermarks $\mathbf{w}_L = \mathbf{w}$ $\mathbf{w}_L = \mathbf{w}_1$ $\mathbf{w}_L = \mathbf{w}$ $\mathbf{w}_R = \mathbf{w}$ $\mathbf{w}_R = \mathbf{w}_2$ $\mathbf{w}_R = warp(\mathbf{w}, \mathbf{d}_L, \mathbf{\theta}_R)$

Coherent vs. (Same or Different)

- Improved robustness against view synthesis and lossy compression
- Alleged improved fidelity
- Computational overhead

Perceptual Study Protocol

Dataset: 15 stereo pair images from RMIT 3DV dataset

- ▶ HD resolution (1920×1080) with aspect ratio 16:9
- Watermarked with specified embedding strength (no perceptual shaping)

Display: Samsung 3D TV with active 3D glasses

Observers: 33 volunteers from Technicolor R&D France

- Good balance age, gender, signal processing expertise
- Depth perception and acuity evaluated with Randot Stereo Test

Protocol: Two Alternate Force Choice (2AFC)

- Question: Which stereo pair is more comfortable (less annoying) to watch?
- Side-by-side display impossible: switch as many times as needed and vote
- 15×3=45 elementary tests in randomized order = 15-20 minutes

Preference of the Observers

First experiment with strong embedding strength (α =20)

Overall preference: Same (34%) < Different (42%) < Coherent (74%)

- Nice feeling of overlaid pattern for disparity-coherent watermarks
- Same looks like "dust on the screen" which is very annoying

A Population Split in Three

Observer category	S vs. D	S vs. C	D vs. C
Eagles	S	С	С
Horses	D	С	С
Moles	D	(C)	(D)

Additional findings

- Eagles + Horses $\approx 2/3$ of the population
- Poor correlation with Randot profile dedicated perceptual studies needed
- Sensitivity to disparity coherence remains with low-power watermarks (α =3)

Content Dependency

Complexity \approx number of switches prior to making a decision

- Per user normalization for comparative purpose
- S-D comparison are more complex, especially for Eagles "equally bad in a different way"
- Easy/difficult content e.g. {1, 13, 15} vs. {8, 10}

Take Away Lessons

Perceptual sensitivity to disparity-coherence evaluated empirically

- Three categories of observers incl. two that feel/see the virtue of disparity coherence
- Not correlated with Randot test
- Sensitivity remains for nearly invisible watermarks

Future work

- Investigate potential correlation with biological signals
- Understand content dependency to devise relevant perceptual shaping strategies

Perspective

Severe aversion for Same casts a new light on potential reasons behind the slow adoption of 3D video technologies

Thank you for your attention

gwenael.doerr@technicolor.com

