Fast Sparse Recovery via Non-Convex Optimization

Laming Chen and Yuantau Gu

Department of Electronic Engineering Tsinghua University Email: chen-Im06@mails.tsinghua.edu.cn, gyt@tsinghua.edu.cn Homepage: http://gu.ee.tsinghua.edu.cn/

Dec. 16, 2015

2 Algorithm

- 3 Convergence Results
- ④ Simulation Results

2 Algorithm

3 Convergence Results

④ Simulation Results

5 Summary

・ロト (個) (主) (主) (三) のへで

Sparse Recovery Problem

- One tries to find a sparse solution to an underdetermined linear system.
- Using ℓ_1 norm to induce sparsity is a standard technique.
- Some certain non-convex functions tend to outperform l
 norm empirically in sparse recovery.

Motivation

- The convergence results of these non-convex algorithms are still very limited.
- We aim to devise a fast algorithm and to provide its convergence results.

Weak Convexity

- The non-convex $F(\cdot)$ becomes convex by adding a quadratic term.
- Let $\rho>0$ be the smallest quantity such that $F(x)+\rho x^2$ is convex.
- These exists $\alpha > 0$ such that $F(x)/x \to \alpha$ as $x \to 0^+$.

$$\frac{\rho}{\alpha}: \text{ non-convexity of } F(\cdot)$$

Problem Setup

• Consider the optimization problem

$$\arg\min_{\mathbf{x}} J(\mathbf{x}) + \frac{\tau}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

where $J(\mathbf{x}) = \sum_{i=1}^{N} F(x_i)$ is fully separable, and non-convex scalar function $F : \mathbb{R} \to \mathbb{R}^+$ satisfies:

- (a) F(0) = 0, $F(\cdot)$ is even and not identically zero;
- (b) $F(\cdot)$ is non-decreasing on $[0, +\infty)$;
- (c) The function $x \mapsto F(x)/x$ is non-increasing on $(0, +\infty)$;

(d) $F(\cdot)$ is weakly convex on $[0, +\infty)$.

• Such $J(\mathbf{x})$ is common in sparse recovery literatures.

Requirements: $0 \le p < 1$ and $\sigma > 0$

No.	F(x)	ho	α
1.	$rac{ x }{(x +\sigma)^{1-p}}$	$(1-p)\sigma^{p-2}$	σ^{p-1}
2.	$1 - \mathrm{e}^{-\sigma x }$	$\sigma^2/2$	σ
3.	$\ln(1+\sigma x)$	$\sigma^2/2$	σ
4.	$\operatorname{atan}(\sigma x)$	$3\sqrt{3}\sigma^2/16$	σ
5.	$(2\sigma x - \sigma^2 x^2)1_{ x \le \frac{1}{\sigma}} + 1_{ x > \frac{1}{\sigma}}$	σ^2	2σ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

2 Algorithm

3 Convergence Results

④ Simulation Results

5 Summary

・ロト (個) (主) (主) (三) のへで

For the optimization problem

$$\arg\min_{\mathbf{x}} J(\mathbf{x}) + \frac{\tau}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

Algorithm 1 Proposed Algorithm

Require: y, A, $\tau > 0$, $\delta > 0$ 1: Initialize: l = 0, $\mathbf{x}^0 = \mathbf{0}$; 2: while not converge do 3: $\nabla^l = \mathbf{x}^l - \delta \mathbf{A}^T (\mathbf{A} \mathbf{x}^l - \mathbf{y})$; 4: $\mathbf{x}^{l+1} = \operatorname{prox}_J (\nabla^l, \delta/\tau)^{-1}$; 5: l = l + 1; 6: end while

¹prox_J(
$$\mathbf{v}, \lambda$$
) = arg min_{**x**} J(\mathbf{x}) + $\frac{1}{2\lambda} ||\mathbf{x} - \mathbf{v}||_2^2$

2 Algorithm

3 Convergence Results

④ Simulation Results

5 Summary

・ロト (個) (主) (主) (三) のへで

Define the objective function

$$G(\mathbf{x}) = J(\mathbf{x}) + \frac{\tau}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

Theorem 1. (Convergence to stationary point)

Assume sequence $\{\mathbf{x}^l\}$ is generated by Algorithm 1. If δ satisfies $0 < \delta < \min\{1/\|\mathbf{A}^T\mathbf{A}\|_2, \tau/(2\rho)\}$, then

- (a) The sequence $\{G(\mathbf{x}^l)\}$ is non-increasing and convergent;
- (b) Any limit point of $\{\mathbf{x}^l\}$ is a stationary point of the problem.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Theorem 2. (Convergence to sparse signal)

- (a) Assume $\|\mathbf{x}^*\|_0 \le K$, $\mathbf{y} = \mathbf{A}\mathbf{x}^* + \mathbf{e}$, and $M_0 = \|\mathbf{x}^0 \mathbf{x}^*\|_2$;
- (b) Suppose $\gamma(J, \mathbf{A}, K) < 1$ and the non-convexity $\rho/\alpha \leq c_1/M_0$;
- (c) Suppose $0 < \delta < \min\{1/(\|\mathbf{A}^T\mathbf{A}\|_2 + \|\mathbf{y}\|_2^2/\|\mathbf{x}^*\|_2^2), \tau/(2\rho)\}$, and the regularization parameter $\tau = c_2/\|\mathbf{e}\|_2$;
- (d) Assume the sequence $\{\mathbf{x}^l\}$ is generated by Algorithm 1, and $\|\mathbf{x}^l \mathbf{x}^*\|_2 \ge c_3 \|\mathbf{e}\|_2$ holds for any $1 \le l \le k$.

Then for any $1 \leq l \leq k$,

$$\|\mathbf{x}^{l} - \mathbf{x}^{*}\|_{2}^{2} + \frac{2\delta c_{2}}{\tau c_{3}}\|\mathbf{x}^{l} - \mathbf{x}^{*}\|_{2} \le \|\mathbf{x}^{l-1} - \mathbf{x}^{*}\|_{2}^{2}.$$

2 Algorithm

3 Convergence Results

④ Simulation Results

5 Summary

General settings

• We choose

$$F(x) = (|x| - \rho x^2) \mathbf{1}_{|x| \le 1/(2\rho)} + 1/(4\rho) \mathbf{1}_{|x| > 1/(2\rho)}.$$

Then it can be calculated that when $\lambda < 1/(2\rho),$

$$\operatorname{prox}_F(v_i, \lambda) = \frac{v_i - \lambda \operatorname{sign}(v_i)}{1 - 2\lambda\rho} \mathbf{1}_{\lambda < |v_i| \le 1/(2\rho)} + v_i \mathbf{1}_{|v_i| > 1/(2\rho)}.$$

We take random partial DCT measurements of a normalized sparse signal.

$$N=2^{10}$$
, $M=2^8$, $K=2^5$, $ho=5$, $\delta=1$, and $au=\sqrt{N}/\|\mathbf{e}\|_2$

Experiment 2: Comparison in the Noiseless Case

$$N=2^{18}$$
, $M=2^{16}$, K varies from 2^{13} to 2^{15} , $ho=120$, and $au=10^6$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Experiment 3: Comparison in the Noisy Case

$$N=2^{18},\ M=2^{16},\ K=2^{13},\ \rho=120,\ {\rm and}\ ({\rm left})\ \|\mathbf{e}\|_2=0.05;\ ({\rm right})$$

 $au=\sqrt{N}/\|\mathbf{e}\|_2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

2 Algorithm

3 Convergence Results

④ Simulation Results

- We propose a fast algorithm for the non-convex function regularized least squares problem.
- We prove that under some conditions, the iterates converge to a neighborhood of the sparse signal with superlinear convergence rate.
- Simulation results verify the theoretical results and show the superiority of the proposed algorithm compared with its convex counterpart.