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Preliminary

Sparse Recovery Problem

One tries to find a sparse solution to an underdetermined
linear system.

Using `1 norm to induce sparsity is a standard technique.

Some certain non-convex functions tend to outperform `1
norm empirically in sparse recovery.

Motivation

The convergence results of these non-convex algorithms are
still very limited.

We aim to devise a fast algorithm and to provide its
convergence results.



Preliminary

Weak Convexity

The non-convex F (·) becomes convex by adding a quadratic
term.

Let ρ > 0 be the smallest quantity such that F (x) + ρx2 is
convex.

These exists α > 0 such that F (x)/x→ α as x→ 0+.
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Preliminary

Problem Setup

Consider the optimization problem

argmin
x
J(x) +

τ

2
‖Ax− y‖22

where J(x) =
∑N

i=1 F (xi) is fully separable, and non-convex
scalar function F : R→ R+ satisfies:

(a) F (0) = 0, F (·) is even and not identically zero;
(b) F (·) is non-decreasing on [0,+∞);
(c) The function x 7→ F (x)/x is non-increasing on (0,+∞);
(d) F (·) is weakly convex on [0,+∞).

Such J(x) is common in sparse recovery literatures.



Concrete Examples of F (·)

Requirements: 0 ≤ p < 1 and σ > 0

No. F (x) ρ α

1. |x|
(|x|+σ)1−p (1− p)σp−2 σp−1

2. 1− e−σ|x| σ2/2 σ

3. ln(1 + σ|x|) σ2/2 σ

4. atan(σ|x|) 3
√
3σ2/16 σ

5. (2σ|x| − σ2x2)1|x|≤ 1
σ
+ 1|x|> 1

σ
σ2 2σ
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Algorithm

For the optimization problem

argmin
x
J(x) +

τ

2
‖Ax− y‖22

Algorithm 1 Proposed Algorithm
Require: y, A, τ > 0, δ > 0
1: Initialize: l = 0, x0 = 0;
2: while not converge do
3: ∇l = xl − δAT(Axl − y);
4: xl+1 = proxJ(∇l, δ/τ) 1;
5: l = l + 1;
6: end while

1proxJ(v, λ) = argminx J(x) +
1
2λ
‖x− v‖22
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Convergence Results

Define the objective function

G(x) = J(x) +
τ

2
‖Ax− y‖22

Theorem 1. (Convergence to stationary point)

Assume sequence {xl} is generated by Algorithm 1. If δ satisfies
0 < δ < min{1/‖ATA‖2, τ/(2ρ)}, then

(a) The sequence {G(xl)} is non-increasing and convergent;

(b) Any limit point of {xl} is a stationary point of the problem.



Convergence Results

Theorem 2. (Convergence to sparse signal)

(a) Assume ‖x∗‖0 ≤ K, y = Ax∗ + e, and M0 = ‖x0 − x∗‖2;

(b) Suppose γ(J,A,K) < 1 and the non-convexity ρ/α ≤ c1/M0;

(c) Suppose 0 < δ < min{1/(‖ATA‖2 + ‖y‖22/‖x∗‖22), τ/(2ρ)},
and the regularization parameter τ = c2/‖e‖2;

(d) Assume the sequence {xl} is generated by Algorithm 1, and
‖xl − x∗‖2 ≥ c3‖e‖2 holds for any 1 ≤ l ≤ k.

Then for any 1 ≤ l ≤ k,

‖xl − x∗‖22 +
2δc2
τc3
‖xl − x∗‖2 ≤ ‖xl−1 − x∗‖22.
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Simulation Results

General settings

We choose

F (x) = (|x| − ρx2)1|x|≤1/(2ρ) + 1/(4ρ)1|x|>1/(2ρ).

Then it can be calculated that when λ < 1/(2ρ),

proxF (vi, λ) =
vi − λsign(vi)

1− 2λρ
1λ<|vi|≤1/(2ρ) + vi1|vi|>1/(2ρ).

We take random partial DCT measurements of a normalized
sparse signal.



Experiment 1: Rate of Convergence

N = 210, M = 28, K = 25, ρ = 5, δ = 1, and τ =
√
N/‖e‖2
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Experiment 2: Comparison in the Noiseless Case

N = 218, M = 216, K varies from 213 to 215, ρ = 120, and τ = 106
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Experiment 3: Comparison in the Noisy Case

N = 218, M = 216, K = 213, ρ = 120, and (left) ‖e‖2 = 0.05; (right)

τ =
√
N/‖e‖2
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Summary

We propose a fast algorithm for the non-convex function
regularized least squares problem.

We prove that under some conditions, the iterates converge to
a neighborhood of the sparse signal with superlinear
convergence rate.

Simulation results verify the theoretical results and show the
superiority of the proposed algorithm compared with its
convex counterpart.
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