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Preliminary

Sparse Recovery Problem

@ One tries to find a sparse solution to an underdetermined
linear system.

@ Using /1 norm to induce sparsity is a standard technique.

@ Some certain non-convex functions tend to outperform /;
norm empirically in sparse recovery.

v

@ The convergence results of these non-convex algorithms are
still very limited.

@ We aim to devise a fast algorithm and to provide its
convergence results.




Preliminary

Weak Convexity

@ The non-convex F(-) becomes convex by adding a quadratic
term.

@ Let p > 0 be the smallest quantity such that F(z) + px? is
convex.

@ These exists a > 0 such that F(z)/z — o as z — 0.

‘ | 2. non-convexity of F'(-)
/, «




Preliminary

Problem Setup

@ Consider the optimization problem

. T
arg min J(x) + | Ax — v}

where J(x) = Efil F(x;) is fully separable, and non-convex
scalar function F': R — R satisfies:

(a) F(0) =0, F(:) is even and not identically zero;

(b) F(-) is non-decreasing on [0, +0c0);

(c) The function  +— F(x)/x is non-increasing on (0, +00);

(d) F(:) is weakly convex on [0, +00).

@ Such J(x) is common in sparse recovery literatures.




Concrete Examples of F'(-)

Requirements: 0 <p<1lando >0

No. F(x) p e

1. W (1 —p)0p72 O'pil
2. 1 — e ol o2/2 o

3. In(1 + o|z|) o2/2 o

4. atan(o|x|) 3v/302/16

5. (20’|CC’ — U2$2)1|x|§% + 1‘x|>é 0'2 20'
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For the optimization problem

. T
arg min J(x) + §|]Ax — yH%

Algorithm 1 Proposed Algorithm
Require: y, A, 7>0,0 >0

1: Initialize: I =0, x° = 0;

2: while not converge do

32 Vi=x!—§AT(AX! —y);
4 xM* =prox, (V! §/7) L
5
6

l=1+1;
: end while

'prox; (v, \) = arg miny J(x) + 55 [|x — v||3
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Convergence Results

Define the objective function

Theorem 1. (Convergence to stationary point)

Assume sequence {x!} is generated by Algorithm 1. If § satisfies
0 <6 <min{1/||ATA|2,7/(2p)}, then

(a) The sequence {G(x!)} is non-increasing and convergent;
(b) Any limit point of {x'} is a stationary point of the problem.




Convergence Results

Theorem 2. (Convergence to sparse signal)
(a) Assume |x*[lo < K,y = Ax* + e, and My = ||x° — x*|2;
(b) Suppose v(J, A, K) < 1 and the non-convexity p/a < ¢1/My;

(c) Suppose 0 < & < min{1/([|ATAll2 + [[y[13/Ilx*]13), 7/(20)},
and the regularization parameter 7 = c3/||e]|2;

(d) Assume the sequence {x'} is generated by Algorithm 1, and
|x! — x*|l2 > c3le||2 holds for any 1 <1 < k.

Then for any 1 <1 <k,

20¢ _
I — x*[3 + =2 lx! — x*[|2 < [Ix'7! = x"3-
TC3
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Simulation Results

General settings

@ We choose

F(z) = (|=| - P$2)1|x|§1/(2p) + 1/(4p) 1|z 1/(2p) -
Then it can be calculated that when A < 1/(2p),

v; — Asign(v;)

proxp (vi; A) = ——— 2 Lycjus<1/(20) F Viljus|>1/(2p)-

@ We take random partial DCT measurements of a normalized
sparse signal.
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Experiment 2: Comparison in the Noiseless Case

N =28 M =218 K varies from 213 to 25, p =120, and 7 = 10°
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Experiment 3: Comparison in the Noisy Case

N =218 M =216 K =213 p=120, and (left) |le|2 = 0.05; (right)
T=VN/|ell:
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@ We propose a fast algorithm for the non-convex function
regularized least squares problem.

@ We prove that under some conditions, the iterates converge to
a neighborhood of the sparse signal with superlinear
convergence rate.

@ Simulation results verify the theoretical results and show the
superiority of the proposed algorithm compared with its
convex counterpart.
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