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1 Introduction

The problem of localizing sensors in a wireless
sensor network poses several challenges. An alter-
native to expensive localization schemes is to work
with sensors which are location unaware. Recently,
bandlimited field estimation without location in-
formation of the sensors in a distributed setup has
been studied. This is an emerging field where the
key idea is to utilize a multitude of such location-
unaware sensors (oversampling) and leverage the
random distribution on their spatial locations to es-
timate the underlying field. Due to symmetry and
shift-invariance properties of bandlimited fields,
it is known that uniformly distributed location-
unaware sensors do not infer the field uniquely.

We study asymmetric (statistical) distributions
on location-unaware sensors, that may enable ban-
dlimited field reconstruction. If the location of each
sensor is random, then a bandlimited field operat-
ing on this randomness is observed. We propose a
model for estimation of periodic bandlimited fields
from samples obtained by sensors whose location
is unknown but restricted to a random point on an
equi-spaced discrete grid.1Oversampling will be
used to overcome location unawareness.

With oversampling, samples obtained from
location-unaware sensors can be clustered together
to infer which sample belongs to which spatial lo-
cation on the equi-spaced grid where the sensors are
present. If p is the probability with which a sensor
falls at a given location, then≈ np will be the num-
ber of samples obtained from there, as n becomes
large. The success of this clustering scheme will
depend on the probability distribution that governs
sensor placement on the grid. By assigning loca-
tions to samples based on their expected frequency,
the field can be detected. The main result of this
work is to find the optimal probability distribution
on sensor locations that minimizes the detection
error-probability of the underlying spatial field.

This is a new model, the likes of which has
not been explored in literature to the best of our
knowledge. The proposed field detection algorithm
uses results from statistics and information theory.
Since most real-world measurements are corrupted
by noise we also include an extension of the algo-
rithm to field estimation from noisy samples which
involves topics from machine learning. The fol-
lowing sections present an overview of our model,
main results and the simulations used to validate
our work.

1This may arise in scenarios where location information is
masked to preserve the identity of the sensors, or to reduce the
amount of data that needs to be transmitted.

2 Sampling Model

Here we discuss the field model and the manner in
which sensors are deployed in the field.

2.1 Spatial field model

The spatial field g(t) is assumed to be periodic, real-
valued, bounded and bandlimited. Without loss of
generality (WLOG), the period of g(t) is fixed to 1.
Then, the Fourier series of g(t) is

g(t) =

b∑
k=−b

a[k] exp(j2πkt) (1)

where a[k] are the Fourier series coefficients of g(t)
and b is a known bandwidth parameter. Since g(t) is
real valued, a[−k] = a[k]∗ (conjugate symmetry).
For simplicity of notation, define sb := 1/(2b + 1)
as a spacing parameter.Since there are 2b + 1 un-
known Fourier series coefficients a[−b], . . . , a[b],
the 2b + 1 field values (g(0), g(sb), . . . , g(2bsb))
uniquely specify the field.

2.2 Sensor deployment model

A discrete-valued non-uniform distribution is con-
sidered for bandlimited field inference. It will be
assumed that a sensor is at location T such that
T = isb with probability pi where i = 0, 1, . . . , 2b

and
∑2b

i=0 pi = 1. Correspondingly,

g(T ) = g(isb) with probability pi, for 0 ≤ i ≤ 2b.
(2)

In our model (illustrated in Fig. 1), the sensor
falls at isb, 0 ≤ i ≤ 2b but its location, that is
the index i, is not known. The parameter ~p :=
p0, p1, . . . , p2b will be treated as a design choice
to optimize any performance criterion. It will be
assumed that elements of ~p are distinct (to break
symmetry in the distribution of sensor-locations).
WLOG, assume that

p0 < p1 < . . . < p2b. (3)

It will be assumed that i.i.d. samples g(T1), g(T2),
. . . , g(Tn) are available for the detection of spatial
field, where n corresponds to oversampling. 2

2It is desirable to address the setup where each sensor’s lo-
cation T is realized from an asymmetric continuous distribution
supported in [0, 1]. This problem is nonlinear and presents sev-
eral difficulties, some of which have been investigated by us and
are included in the detailed report.



Fig. 1: Sampling model for a signal g(t) with b = 2
i.e. sb = 1/5

3 Field detection and its perfor-
mance

Field detection and the choice of ~p is discussed in
this section.

3.1 The field detection algorithm
Based on the readings g(T1), g(T2), . . . , g(Tn), the
field g(t) has to be detected. From (3) we know that
pi are distinct. We also assume that the field val-
ues g(isb) are distinct3. Each sensor records g(isb)
with probability pi. The following clustering al-
gorithm will be used to ascertain the field samples
g(isb), which specify the entire field g(t):

1. The readings Y1 := g(T1), . . . , Yn := g(Tn),
with Ti unknown and in the set {0, sb, . . . , 2bsb},
are collected.

2. The values Y1, Y2, . . . , Yn are clustered into
(value, type) pairs. Equal values (value) in
Y1, Y2, . . . , Yn are collected together and the
number of equal values (type) is recorded.

3. Empirical probabilities type/n for each value
are calculated. For large n, the empirical
probability type/n of each value will be near
the correct pi in ~p.

4. The value with smallest empirical probability
is assigned to g(0), the value with next small-
est empirical probability is assigned to g(sb),
and so on till g(2bsb).

3If ~a is the realization of a continuous random distribu-
tion, then this condition will hold almost surely. A viola-

tion of this condition implies that
b∑

k=−b
a[k](exp(j2πkmsb)−

exp(j2πknsb)) = 0. That is, a linear combination of ~a–a con-
tinuous random variable–is zero with probability one.

Example 3.1. Consider a signal g1(t) with band-
width parameter b = 1, and sb = 1

2b+1 =
1
3 . The field values are known to be g1(0) =
1.06, g1(1/3) = 1.80, g1(2/3) = 0.14.

The field is sampled using n = 10 randomly
realized values of sensor’s location in the set
{0, 1/3, 2/3}. The 10 observed samples were
1.80, 0.14, 0.14, 1.06, 1.80, 0.14, 1.80, 1.06, 0.14,
0.14. The (value, type) pairs are (1.06, 2), (1.80, 3),
and (0.14, 5). The above algorithm concludes that
g1(0) = 1.06, g1(1/3) = 1.80, g1(2/3) = 0.14,
and is correct.

The field is again sampled using n = 10 ran-
domly realized values of sensor’s location. This
time, the 10 observed samples were 1.06, 0.14, 0.14,
1.06, 1.80, 0.14, 1.80, 1.06, 0.14, 0.14. The (value,
type) pairs are (1.06, 3), (1.80, 2), and (0.14, 5).
The above algorithm concludes that g1(0) = 1.80,
g1(1/3) = 1.06, g1(2/3) = 0.14, and is incorrect.

3.2 Detection-Error Probability

Define Ni :=
∑n

j=1 1 [Yj = g(isb)] as the type of
g(isb) in n field observations. Then, in the above
algorithm as n→∞, it is expected that

0 < N0 < N1 < . . . < N2b. (4)

If the above event is violated, it results in er-
roneous field detection. We wish to maximize the
probability of correct detection (or minimize the
detection-error probability) in (4) which depends
on the distribution ~p. We formulate this problem
as an optimization problem using Sanov’s Theo-
rem from the theory of large deviations, and solve
it to obtain the following distribution ~p that gives
minimum detection-error probability for our field
detection algorithm and is the main result of this
work:

pi =
3(i+ 1)2

(b+ 1)(2b+ 1)(4b+ 3)
for 0 ≤ i ≤ 2b.

(5)

The performance of the optimal distribution (as
derived above) is verified against 3 other distribu-
tions for a randomly generated field using MAT-
LAB. For each distribution the field is sampled as
described in Section 2.2 and estimated using the
proposed field detection algorithm. The results in
Fig 2 (calculated over 10000 Monte Carlo trials)
show that the optimal distribution performs best in
terms of minimum empirical detection error proba-
bility
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Fig. 2: Comparison of detection error-probabilities
for different laws on ~p

4 Field Estimation from Noisy
Samples

Each uncorrupted sample g(T1), g(T2), . . . , g(Tn)
has a value equal to g(isb) for some 0 ≤ i ≤ 2b
as discussed in Section 3.1. Assuming that the sam-
ples are corrupted by zero mean, i.i.d additive Gaus-
sian noise with standard deviation σ, the field detec-
tion algorithm is modified as follows:

1. The readings Y1 := g(T1) + η1, . . . , Yn :=
g(Tn) + ηn, with Ti unknown and in the set
{0, sb, . . . , 2bsb}, and ηi ∼ N (0, σ2) are col-
lected.

2. Since Tk = isb with probability pi, the read-
ings Yk form a Gaussian Mixture Model
(GMM) with means g(isb) and weights pi.

3. The Expectation Maximization (EM) algo-
rithm for clustering samples obtained from a
GMM gives an estimate of the weights and
means (analogous to type and value in the
noiseless case) of the GMM (σ is assumed to
be known.)

4. The mean with smallest weight is assigned to
g(0), the mean with next smallest weight is
assigned to g(sb), and so on till g(2bsb).

The performance of the algorithm in this case is
demonstrated in Fig 3 which is a histogram of dis-
tortion between 10000 randomly generated signals
and their estimates from noisy samples. The dis-
tribution on the sensor locations is the one in (5).
10000 noisy samples are used to estimate each sig-
nal (as described above) and the distortion is com-
puted as the ratio of the mean squared error be-
tween estimated and original signals to the energy
of the original signal. Most of the signals are recon-
structed with a low value of distortion. The signals
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Fig. 3: Histogram of Distortion for estimation of
signals from noisy samples

that give a high distortion are the ones in which the
clusters formed by the noisy samples overlap to a
large extent. It is known that the EM algorithm per-
forms poorly for overlapping clusters and there ex-
ist approaches which claim to perform better in this
case though their applicability to the present sce-
nario remains to be seen.

5 Conclusions
This work proposes a new model for the detection
and estimation of periodic bandlimited fields using
location-unaware sensors. Our work lies at the in-
tersection of signal processing, remote sensing, in-
formation theory and machine learning. Future di-
rections include studying the effect of perturbing
sensor locations and deploying sensors according to
a continuous distribution in one period of the field.
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Abstract

Sampling and estimation of spatial fields using sensors which are location unaware is an exciting

topic. Here we study this topic under the assumption that the sensors are deployed according

to a known probability distribution, under different scenarios.

The initial part of this work studies detection of bandlimited fields from location-unaware

sensors that are restricted to a discrete grid. Oversampling is used to overcome the lack of

location information. The samples obtained from location-unaware sensors are clustered together

to infer the field using the probability distribution that governs sensor placement on the grid.

Based on this clustering algorithm, the main result of this part is to find the optimal probability

distribution on sensor locations that minimizes the detection error-probability of the underlying

spatial field. The proposed clustering algorithm is also extended to include the case of signal

reconstruction in the presence of sensor noise by treating the distribution of the noisy samples

as a mixture model and using clustering to estimate the mixture model parameters.

In the later part of the work the restriction that sensor locations must lie on a discrete grid

is removed. It is already known that location-unaware sensors deployed according to a uniform

distribution cannot infer the field uniquely in the absence of order information on the sensor

locations. We strengthen this result further and give a procedure for estimating the ordering of

sensor locations which is absent in related work. It is also shown that even in the case where

sensors are deployed according to a general (not necessarily uniform) distribution there exist

several fields that cannot be inferred uniquely. This reinforces the need for restricting the sensor

locations to a discrete grid or knowing the ordering on the sensor locations. These are the main

results for this part of the work.

Index terms: Signal Sampling, Signal Reconstruction, Wireless Sensor Networks

iv
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Chapter 1

Introduction

The problem of localizing sensors in a wireless sensor network poses several challenges [1]. An

alternative to expensive localization schemes is to work with sensors which are location unaware.

Recently, bandlimited field estimation without any location information of the sensors in a dis-

tributed setup has been studied [2], [3]. This is an emerging field where the key idea is to utilize

a multitude of such location-unaware sensors (oversampling) and leverage the random distribu-

tion on their spatial locations. Henceforth, location-unaware sensors will be simply termed as

sensors.

Due to symmetry and shift-invariance properties of bandlimited fields, it is known that

uniformly distributed sensors only infer the underlying field up to a shift and a flip [2]. We

will show in this work that scaling the independent variable of the underlying field also leads to

ambiguous estimation by uniformly distributed sensors. This motivates the pursuit of alternate

approaches for estimating spatial fields from samples in the absence of location information.

In the first part of this work we have considered estimation of bandlimited fields from samples

obtained by sensors whose location is restricted to a random point on an equi-spaced discrete

grid.1. The sensors are deployed according to an asymmetric statistical distribution on the

grid points. Since the location of each sensor is random, a bandlimited field operating on this

randomness is observed. Oversampling is used to overcome the lack of location information.

With oversampling, samples obtained from sensors can be clustered together to infer which

sample belongs to which spatial location on the equi-spaced grid where the sensors are present. If

p is the probability with which a sensor falls at a given location, then ≈ np will be the number of

1This may arise in scenarios where location information is masked to preserve the identity of the
sensors, or to reduce the amount of data that needs to be transmitted.

1



Chapter 1. Introduction 2

samples obtained from there, as n (total number of samples across all locations) becomes large.

By assigning locations to samples based on their expected frequency, the field can be detected.

We show that such a scheme is optimal in the sense of minimising the KL divergence between

the distribution on the sample data and the underlying distribution on the sensor locations.

The success of this clustering scheme will depend on the probability distribution that governs

sensor placement on the grid. The main result of this part is to find the optimal probability

distribution on sensor locations that minimizes the detection error-probability of the underlying

spatial field.

Since samples obtained from most real world signals are corrupted by some noise, this work

also extends the proposed clustering algorithms to the case of signal reconstruction from noisy

samples. The distribution of the noisy samples is modeled as a mixture model and the special

case of Gaussian noise is analysed to show that our approach works fairly well in most cases

even in the presence of noise.

In the latter part of the work we have considered the case where the sensors are not con-

strained to lie on a discrete grid but can lie anywhere in the support of the field. As stated earlier

if the sensor locations are distributed uniformly then the field cannot be inferred uniquely. To

overcome this most existing works in this area [2], [3], [4], [5], assume that the order in which

the sensors are located in the field is known. However methods for inferring the ordering have

not been explored in literature to the best of our knowledge. Hence we have proposed a scheme

for inferring the order of the sensor locations based on correlation between samples. Using this

scheme fields can be estimated from sensors deployed according to a uniform distribution.

Lastly we consider the case where the field is sampled according to a general (not necessarily

uniform) continuous distribution on its support. We observe that a large class of fields cannot

be uniquely specified by samples obtained from such a distribution. Since the underlying field

is not typically known in most sampling problems and most natural fields change with time it

does not appear to be possible to guard against errors in field estimation in this case.

Notation: Space will be denoted by t. Spatial fields will be denoted by g(t) and its variants,

and the Fourier Series coefficients will be denoted by a[k] and its variants. a∗ will denote the

complex conjugate of a. j =
√
−1. N (µ, σ2) denotes a Gaussian distribution with mean µ and

standard deviation σ. Vectors are column-vectors. The probability and expectation operators

will be denoted by P and E respectively. The indicator function of a set A will be denoted by

1(x ∈ A). Uppercase letters such as A, Y,X, and N denote random variables while lowercase

letters like a and x denote deterministic quantities. Probability density functions will be denoted

2



Chapter 1. Introduction 3

by fY (y) and its variants, and cumulative distribution functions (CDF) will be denoted by FY (y)

and its variants, where Y is the corresponding random variable. Independent and identically

distributed will be termed as i.i.d. It is assumed that there is an underlying probability space

Ω,F ,P over which all probability events discussed in the paper are defined.

Organization: Chapter 2 reviews the existing literature on the topic. Chapters 3-5 deal with

the problem of field estimation from samples obtained on a discrete grid without measurement

noise. The sampling model is introduced in Chapter 3, the field detection algortihm is explained

in Chapter 4 and the optimal distribution on the sampling locations for the proposed field detec-

tion algorithm is derived in Chapter 5. Chapter 6 extends the scheme to include measurement

noise in the samples. Chapters 7 considers the case where the samples are obtained from a

uniform continuous distribution on the sensor locations and introduces the scheme for inferring

the order information on the sensor locations. Chapter 8 discusses sampling with general (not

necessarily uniform) continuous distributions on the sensor locations. Conclusions are presented

in Chapter 9.

3



Chapter 2

Review of Literature

Interest in this topic has developed relatively recently and hence the existing body of work is

fairly small.

Estimation of bandlimited fields from samples taken at unknown but statistically distributed

sampling locations was studied by Kumar [2], [3]. [2] deals with bandlimited field estimation

from samples obtained from uniformly distributed sensors with known ordering on the sensor

locations. [3] extends the problem to the case where the distribution on the sensor locations is

unknown, such as when the field is sampled at random points by a mobile sensor (thus ensuring

the availability of order information).

Reconstruction of discrete-time bandlimited fields from unknown sampling locations was

studied by Marziliano and Vetterli [4] in a combinatorial setting. Once again the ordering on

the sensors is assumed to be known and the problem is solved as a combinatorial optimization

problem.

Estimation of periodic bandlimited signals with random sampling locations has been studied

by Nordio et al. [6], where the samples are obtained by perturbing sensors that are located on

a deterministic equi-spaced grid with the grid points as the mean locations. The notion of a

discrete grid is introduced in this work and although the actual locations of the samples are

unknown, the mean value of the location (grid point) of each sensor is known.

Estimating a bandlimited signal from a finite number of ordered non-uniform samples at

unknown locations has been studied by Browning [5]. The end points are assumed to be fixed

and the signal values at these points are assumed to be known.

In contrast with these works our work eliminates the need for order information on sensor

locations by constraining the sensors to lie on a discrete grid. The grid point at which a particular

4



Chapter 2. Review of Literature 5

sample is obtained is random and unknown. We have designed an optimal distribution for

deploying sensors on the grid points that minimizes the field detection error probability.

In situations where it might not be possible to restrict sensor locations to a discrete grid it is

desirable to know the ordering of the sensors so that one of the above field estimation schemes

may be applied. Thus through our proposed method of estimating the ordering of the sensors

we have strengthened the existing methods in this area.

5



Chapter 3

Sampling Model and Review

The next 4 chapters deal with sensor deployment on a discrete grid. The sampling and sensor

deployment models are discussed, and related theoretical results are reviewed, in this chapter.

3.1 Spatial field model

The spatial field g(t) is assumed to be periodic, real-valued, bounded and bandlimited. Without

loss of generality (WLOG), the period of g(t) is fixed to 1. Then, the Fourier series of g(t) is

g(t) =
b∑

k=−b
a[k] exp(j2πkt) (3.1)

where a[k] are the Fourier series coefficients of g(t) and b is a known bandwidth parameter.

Since g(t) is real valued, a[−k] = a[k]∗ (conjugate symmetry). For simplicity of notation, define

sb := 1/(2b+ 1) as a spacing parameter and φk := exp(j2πksb),−b ≤ k ≤ b. Let Φb be defined

as

Φb =


1 . . . 1

φ−b . . . φb
...

...

(φ−b)
2b . . . (φb)

2b

 .

6



Chapter 3. Sampling Model and Review 7

The columns of Φb are orthogonal and a sampling theorem ensures that [6, 7]:

~a = (Φb)
−1~g =

1

(2b+ 1)
Φ†b~g, (3.2)

where ~a = (a[−b], a[−b + 1], . . . , a[b])T , where Φ†b is the conjugate transpose of Φb, and ~g =

(g(0), g(sb), . . . , g(2bsb))
T . From (3.2), ~a and g(t) can be obtained using the samples in ~g.

It will be assumed that g(isb) are distinct for different values of i. This feature will be useful

during clustering.1

3.2 Sensor deployment model

A discrete-valued non-uniform distribution is considered for bandlimited field inference. It will be

assumed that a sensor is at location T such that T = isb with probability pi where i = 0, 1, . . . , 2b

and
∑2b

i=0 pi = 1. Correspondingly,

g(T ) = g(isb) with probability pi, i = 0, 1, . . . , 2b (3.3)

In our model (illustrated in Fig. 3.1), the sensor falls at isb, 0 ≤ i ≤ 2b but its location, that

is the index i, is not known. The parameter ~p := p0, p1, . . . , p2b will be treated as a design choice

to optimize any performance criterion (see Chapter 4). It will be assumed that elements of ~p

are distinct (to break symmetry in the distribution of sensor-locations). WLOG, assume that

p0 < p1 < . . . < p2b. (3.4)

It will be assumed that i.i.d. samples g(T1), g(T2), . . . , g(Tn) are available for the detection of

spatial field, where n corresponds to oversampling.2

1If ~a is the realization of a continuous random distribution (as is the case for Fourier coefficients of
a natural signal), then this condition will hold almost surely. A violation of this condition implies that

b∑
k=−b

a[k](exp(j2πkmsb) − exp(j2πknsb)) = 0. That is, a linear combination of ~a–a continuous random

variable–is zero with probability one.
2It is desirable to address the setup where each sensor’s location T is realized from an asymmetric

continuous distribution supported in [0, 1]. This problem will be discussed in a later chapter

7



Chapter 3. Sampling Model and Review 8

Figure 3.1: Sampling model for a signal g(t) with b = 2 i.e. sb = 1/5

3.3 Useful mathematical results

To analyze the detection error-probability, large deviation analysis setup will be used. Sanov’s

theorem, which addresses the asymptotic likelihood properties with respect to an incorrect prob-

ability model, will be used [8, Chap 11.4]. Let X1, . . . , Xn be i.i.d. random variables with discrete

distribution ~p. Then, the observed distribution of X1, . . . , Xn lies in the closed set E with the

following probability

lim
n→∞

1

n
log2 [P(Xn

1 ∈ E)] = −D(~q∗ ‖ ~p) (3.5)

where ~q∗ = arg min~q∈E D(~q ‖ ~p) is the distribution in E that is the closest to ~p in the Kullback

Leibler divergence or relative entropy terms. The quantity D(~q∗ ‖ ~p) will be termed as the

error-exponent in this work. Fig. 3.2 illustrates Sanov’s theorem.

To determine if a statistic is sufficient the Fisher-Neyman Factorization Theorem [9, Chap 5.5]

will be used. Let X1, . . . , Xn be a random sample with probability density fX(x|θ). The random

vector T (X1, . . . , Xn) is a sufficient statistic for θ if and only if:

fX(X1, . . . , Xn|θ) = fθ(T (X1, . . . , Xn))H(X1, . . . , Xn) (3.6)

where fθ(T (X1, . . . , Xn)) is a function of T (depends on θ) and H(X1, . . . , Xn) is independent

of θ.

8



Chapter 3. Sampling Model and Review 9

~p

~q

E

Figure 3.2: Probability Simplex illustrating Sanov’s Theorem

The following inequalities will be used for optimization

AM-GM:
x+ y

2
≥ √xy, x, y ≥ 0 (3.7)

Log-sum:

n∑
i=1

ai log
ai
bi
≥ a log

a

b
, ai, bi > 0 (3.8)

where a =
∑n

i=1 ai and b =
∑n

i=1 bi.

9



Chapter 4

Field Detection

A field detection algorithm is proposed in this chapter and the rationale behind choosing this

algorithm is discussed.

4.1 The field detection algorithm

Based on the readings g(T1), g(T2), . . . , g(Tn), the field g(t) has to be detected. From (3.4) and

Section 3.1, {g(isb), pi} pairs are distinct in both the elements. Each sensor records g(isb) with

probability pi. The following clustering algorithm will be used to ascertain the field samples

g(isb), which specify the entire field g(t) (see (3.2)):

1. The readings Y1 := g(T1), . . . , Yn := g(Tn), with Ti unknown and in the set {0, sb, . . . , 2bsb},

are collected.

2. The values Y1, Y2, . . . , Yn are clustered into (value, type) pairs. Equal values (value)

in Y1, Y2, . . . , Yn are collected together and the number of times a value is repeated in

Y1, Y2, . . . , Yn is recorded as type.

3. Empirical probabilities (type/n) for each value are calculated. For large n, the empirical

probability (type/n) of each value will be near the correct pi in ~p.

4. The value with smallest empirical probability is assigned to g(0), the value with next

smallest empirical probability is assigned to g(sb), and so on till g(2bsb).

Example 4.1.1. Consider a signal g1(t) with bandwidth parameter b = 1, and sb = 1
2b+1 = 1

3 .

The field values are known to be g1(0) = 1.06, g1(1/3) = 1.80, g1(2/3) = 0.14.

10



Chapter 4. Field Detection 11

The field is sampled using n = 10 randomly realized values of sensor’s location in the set

{0, 1/3, 2/3}. The 10 observed samples were 1.80, 0.14, 0.14, 1.06, 1.80, 0.14, 1.80, 1.06, 0.14, 0.14.

The (value, type) pairs are (1.06, 2), (1.80, 3), and (0.14, 5). The above algorithm concludes that

g1(0) = 1.06, g1(1/3) = 1.80, g1(2/3) = 0.14, and is correct.

The field is again sampled using n = 10 randomly realized values of sensor’s location. This

time, the 10 observed samples were 1.06, 0.14, 0.14, 1.06, 1.80, 0.14, 1.80, 1.06, 0.14, 0.14. The

(value, type) pairs are (1.80, 2), (1.06, 3), and (0.14, 5). The above algorithm concludes that

g1(0) = 1.80, g1(1/3) = 1.06, g1(2/3) = 0.14, and is incorrect.

Thus we see that the proposed field algorithm can detect the field both correctly and incorrectly.

However we will show in the following two sections that:

1. The type as defined above, is a sufficient statistic with respect to field detection in our

sampling model

2. The manner in which our algorithm assigns locations to the samples minimizes the KL

divergence between the empirical and actual distributions on the sampling locations

These factors form the rationale behind our field detection algorithm.

4.2 Statistical sufficiency of type

Since the field is sampled at 2b + 1 distinct locations, the samples Y1, Y2, . . . , Yn take 2b + 1

distinct values as discussed in Section 3.1. Let ~V = V0, V1, . . . , V2b denote the vector of these

values. We observe that the field values at the sampling locations, g(ksb), 0 ≤ k ≤ 2b, are an

unknown (due to lack of location information) permutation of the elements of ~V .

There are (2b+ 1)! distinct permutations of ~V . The goal of our field detection algorithm is

to assign the correct location to each of the elements of ~V . In other words we seek to estimate

the permutation of ~V that gives the correct values of the field at the sampling locations.

Let ~M = M0,M1, . . . ,M2b denote the vector of types corresponding to the values in ~V (Mk

is the type of value Vk). Each permutation of the values corresponds to a permutation of the

types as well. Let ρ denote a permutation and let ~V ρ and ~Mρ denote the permuted versions of

the values and types respectively. Our goal is to estimate the permutation ρ∗ that leads to the

correct assignment of values to the locations.

11



Chapter 4. Field Detection 12

Example 4.2.1. Consider the second sampling experiment of the previous example where the

(value, type) pairs are (1.80, 2), (1.06, 3), and (0.14, 5). Assigning V0 = 1.80, V1 = 1.06, V2 = 0.14

some possible permutations (ρ) are the identity permutation {(1.80, 2), (1.06, 3), (0.14, 5)}, swap-

ping V0 and V1, {(1.06, 3), (1.80, 2), (0.14, 5)}, swapping V0 and V2, {(0.14, 5), (1.80, 2), (1.06, 3)}

and so on.

Assuming that the first element after permutation is assigned to g(0), the second to g(sb)

and the third to g(2sb), we see that swapping V0 and V1 is the permutation (ρ∗) that leads to the

correct assignment of values to the locations.

The field is sampled according to a distribution ~p as defined in Section 3.2. Thus, given that

the field values at the sampling locations, g(ksb), 0 ≤ k ≤ 2b correspond to a permutation ρ of

~V , the permuted vector of types is ~Mρ and the distribution of the samples Y1, Y2, . . . , Yn is given

by:

fY (Y1, Y2, . . . , Yn|ρ) =
2b∏
k=0

p
Mρ
k

k (4.1)

This satisfies the Fisher-Neymann Factorization Theorem. Here ρ is the parameter(θ) that

we wish to estimate, H(Y1, Y2, . . . , Yn) = 1 and the statistic T (Y1, Y2, . . . , Yn) is ~M , the vector

of ( types). Thus it is a sufficient statistic and no other statistic calculated from the samples can

provide more information about the parameter ρ.

4.3 Location assignment and KL divergence

The field detection algorithm assigns values to sampling locations in 0, sb, . . . 2bsb in increasing

order of type. We will show in this section that this assignment minimizes the KL divergence

between the empirical and actual distributions on the data.

The data is sampled at location ksb, 0 ≤ k ≤ 2b with probability pk and we know from (3.4)

that p0 < p1 < . . . < p2b.

Consider an initial arbitrary assignment of values to sampling location such that the empirical

probability(type/n) of the value assigned to location ksb is qk. Let ~q be the vector of these

empirical probabilities. Consider 2 locations l1 and l2 such that 0 ≤ l1 < l2 ≤ 2b. Therefore

pl1 < pl2 . Assume that our current location assignment is such that ql1 > ql2 . Thus:

12



Chapter 4. Field Detection 13

D(~q||~p) =
2b∑
k=0

qk log2
qk
pk

(4.2)

= D0 + ql1 log2
ql1
pl1

+ ql2 log2
ql2
pl2

(4.3)

Consider a new assignment of the values such that the values at locations l1 and l2 are

swapped and the values at all other locations are unchanged. Let the empirical probablities for

this assignment be stored in the vector ~r. Thus rl1 = ql2 , rl2 = ql1 and rk = qk for all k 6= l1, l2.

Thus:

D(~r||~p) =
2b∑
k=0

rk log2
rk
pk

(4.4)

= D0 + ql2 log2
ql2
pl1

+ ql1 log2
ql1
pl2

(4.5)

The difference between the KL divergence for the two arrangements is:

D(~q||~p)−D(~r||~p) = (ql1 − ql2) log2
pl2
pl1

> 0 (4.6)

Thus D(~q||~p) > D(~r||~p) and we can see that the process of swapping values can be repeated

until a state of minimum KL divergence is reached which in fact corresponds to the case where the

empirical probabilities follow the same ordering as the actual probabilities or in other words when

the values are arranged in increasing order of type. Due to the asymmetry in the distribution

this is in fact the unique minimum.

4.4 Remarks on the Algorithm

In the previous two sections we have seen that the proposed algorithm uses all the available

information from the samples for location assignment and finds the location assignment that

most closely matches the empirical distribution on the data to the actual distribution on the

sampling locations. Hence we expect it to yield correct location assignment in the asymptotic

sense. A few concluding remarks on this algorithm will help in motivating the following chapters

and our main results:

1. Although our work deals with periodic bandlimited fields, the detection algorithm can be

13



Chapter 4. Field Detection 14

generalized to any finite support/periodic field which can be uniquely specified by samples

at a finite number of locations. For eg-Finite degree polynomials.

2. For any distribution on sampling locations such that pk = pl for some k 6= l the algorithm

breaks down since there will be more than one ordering of the values corresponding to the

minimum KL divergence (swapping the values at assigned to locations ksb and lsb yields

the same KL divergence but a different estimated field).

3. Even for the class of asymmetric distributions the performance of our algorithm will

depend on the exact values of the elements of ~p and it would be desirable to find the

~p that gives the least errors in field detection. We shall look into this in detail in the next

chapter.

14



Chapter 5

Performance of the Field Detection

Algorithm

This chapter seeks the distribution ~p on the sampling locations that gives the best performance

in our field detection algorithm. For further discussions, define Ni :=
∑n

j=1 1 [Yj = g(isb)] as

the type of g(isb) in n field observations. Then, in the above algorithm as n→∞, it is expected

that

0 < N0 < N1 < . . . < N2b. (5.1)

If the above event is violated, it results in erroneous field detection. The probability of correct

detection in (5.1) will be maximized by choosing the sensor deployment distribution ~p.

5.1 Detection error-probability minimization

The spatial field is detected correctly when the condition in (5.1) is satisfied. Let Pe be the

detection error-probability. The error-exponent (as the number of samples n gets large) in the

detection error-probability will be maximized. Note that,

Pe = P
[
(0 < N0 < N1 < ... < N2b)

c
]

(5.2)

= P
[
{N0 = 0} ∪ {N0 ≥ N1} ∪ . . . ∪ {N2b−1 ≥ N2b}

]
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Chapter 5. Performance of the Field Detection Algorithm 16

By applying the union-bound and the subset-inequality (A ⊆ B implies P(A) ≤ P(B)) in the

above equation [10], we get

Pe ≤ (2b+ 1) max
{
P(N0 = 0),P(N0 ≥ N1), . . . ,

P(N2b−1 ≥ N2b)
}

(5.3)

and Pe ≥ max
{
P(N0 = 0),P(N0 ≥ N1), . . . ,

P(N2b−1 ≥ N2b)
}
. (5.4)

From the above equations, the error-exponent in Pe is maximized if the error exponent of

max
{
P(N0 = 0),P(N0 ≥ N1), . . . ,P(N2b−1 ≥ N2b)

}
is maximized. The constant factor (2b+ 1)

in (5.3) does not contribute to the error-exponent. The error-exponent maximization is addressed

next.

A sensor falls at location 0 with probability p0. With n randomly deployed sensors,

P[N0 = 0] = (1− p0)n. (5.5)

To compute P[N0 ≥ N1] and other similar events, Sanov’s theorem will be used (see (3.5)). An

empirical distribution ~q will be found such that D(~q ‖ ~p) is minimum, which results in the error-

exponent via Sanov’s theorem (see (3.5)). The empirical distribution is ~q =
[
N0
n ,

N1
n , . . . ,

N2b
n

]
and, from Sanov’s theorem, the function to be minimized is

D(~q ‖ ~p) =
2b∑
i=0

Ni

n
log2

Ni

npi

subject to
2b∑
i=0

Ni

n
= 1 and N1 ≤ N0. (5.6)

The corresponding Lagrangian is

L =

2b∑
i=0

Ni

n
log2

Ni

npi
+ λ

(
2b∑
i=0

Ni − n

)
+ µ(N1 −N0)

At the minima of D(~q ‖ ~p) in (5.6),

∂L

∂Ni
= 0 for 0 ≤ i ≤ 2b (5.7)
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Chapter 5. Performance of the Field Detection Algorithm 17

The solutions of above equation are

N0 =
np0
e

2−n(λ−µ), N1 =
np1
e

2−n(λ+µ), (5.8)

and,

Ni =
npi
e

2−nλ for i ≥ 2. (5.9)

The values of µ and λ can be found by KKT conditions [11], but by using the log-sum and

AM-GM inequalities in (3.8) and (3.7) µ can be found directly as follows. Observe that µ is only

associated with N0 and N1. The terms corresponding to N0 and N1 in (5.6) is lower-bounded

by

N0

n
log2

N0

np0
+
N1

n
log2

N1

np1
≥ N0 +N1

n
log2

N0 +N1

n(p0 + p1)

≥ 2
√
N0N1

n
log2

2
√
N0N1

n(p0 + p1)
.

In the above equation, the minimum value requires that N0 = N1. This results in

µ =
1

2n
log2

p1
p0
, and N0 = N1 =

n

e
2−nλ

√
p0p1 (5.10)

In (5.8), the product N0N1 does not depend on µ. So the minimum value of first two terms in

D(~q ‖ ~p) is attained only when N0 = N1 = n
e 2−nλ

√
p0p1.

For finding λ, note that
∑2b

i=0Ni = n. Using N0, N1 from (5.10) and Ni from (5.9) results in

λ = − 1

n
log2(

e

1− (
√
p1 −

√
p0)2

) (5.11)

This value of λ gives

Ni =
npi

1− (
√
p1 −

√
p0)2

and N0 = N1 =
n
√
p0p1

1− (
√
p1 −

√
p0)2

.

Substitution of N0, N1, . . . , N2b from the above equation in (5.6) results in the desired minimum
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Chapter 5. Performance of the Field Detection Algorithm 18

value of D(~q∗ ‖ ~p),

D(~q∗ ‖ ~p) = log2
1

1− (
√
p1 −

√
p0)2

(5.12)

For Ni ≥ Ni+1, the optimization constraint N0 ≥ N1 will get replaced by Ni ≥ Ni+1 in (5.6).

The analysis is identical and the result is

D(~q∗ ‖ ~p) = log2
1

1− (
√
pi+1 −

√
pi)2

. (5.13)

Let d0 =
√
p0 and di =

√
pi −

√
pi−1, 1 ≤ i ≤ 2b and let dmin = min{d0, d1, . . . , d2b}. Then

dmin will determine the value of the largest term in max
{
P(N0 = 0),P(N0 ≥ N1), . . . ,P(N2b−1 ≥

N2b)
}

. This is by Sanov’s theorem which asserts that P(Ni ≥ Ni+1) ∝ 2−nD(~q∗‖~p). Consequently,

the value of dmin has to be maximized.

For maximizing dmin, note that

(2b+ 1)dmin ≤
2b∑
i=0

di =
√
p2b. (5.14)

To satisfy equality in (5.14),

√
p0 =

√
p2b

2b+ 1
and
√
pi+1 =

√
pi +

√
p2b

2b+ 1
. (5.15)

This relationship, along with p0 + . . .+ p2b = 1, results in

pi =
3(i+ 1)2

(b+ 1)(2b+ 1)(4b+ 3)
for 0 ≤ i ≤ 2b. (5.16)

This law on ~p ensures that the field detection error probability in (5.2) is minimized, and is the

main result of this work.

For this law:

dmin = d0 = d1 =, . . . , d2b =

√
p2b

2b+ 1
(5.17)

P(N0 = 0) = P(N0 ≥ N1) = . . . = P(N2b−1 ≥ N2b = (1− d2min)n (5.18)

(1− d2min)n ≤ Pe ≤ (2b+ 1)(1− d2min)n (5.19)
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5.2 Controlling the detection-error probability

The probability law obtained in the previous section has the minimum detection error probability

that converges to zero asymptotically. However asymptotic convergence has little practical

applications. Instead, in a practical situation where a field is sampled at unknown locations on

a discrete grid, it is desirable to find the number of samples n that can be drawn to guarantee

that any field of bandwidth b can be estimated with detection-error probability, Pe, less than

some threshold ε→ 0.

From equation (5.19) a sufficient condition for Pe ≤ ε is:

(2b+ 1)(1− d2min)n ≤ ε (5.20)

Taking natural logarithm on both sides and noting that lnx < 0 for x < 1 gives us the

condition:

n ln(1− d2min) ≥ ln(
ε

(2b+ 1)
) (5.21)

n ≥ ln(ε̂)

ln(1− d2min)
(5.22)

where ε̂ = ε
(2b+1)

This is a sufficient condition on the number of samples required to reduce the detection error

probability below a specified threshold for a field of given bandwidth.

5.3 Simulation results

Using MATLAB, the detection error-probability was compared for different laws on~p. Fields of

bandwidth 3, 5, 10, and 20 respectively were used. The Fourier Series coefficients of each field

was picked by a uniform random number generator. The number of randomly collected samples

for each field was varied between 100 to 105 for the fields of bandwidth 3, 5, 10, and between 100

to 106 for the field of bandwidth 20. The empirical detection error-probability, when calculated

using 10000 Monte-Carlo trials, is plotted in Fig. 5.1. The log scale on the Y-axis serves to model

the error exponent. Four different methods to select ~p were used for comparison. The selections

include: (i) the optimal distribution in (5.16), (ii) a linear distribution ~p = [α, 2α, . . . , (2b+1)α],

(iii) a cubic distribution ~p = [α, 8α, . . . , (2b + 1)3α], and (iv) ordered uniformly distributed
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Figure 5.1: Detection error-probabilities for different laws on ~p and different bandwidths
are compared. The four laws used include the optimal ~p in (5.16), a linear law, a cubic
law, and a randomly generated ~p. Fields of bandwidth 3, 5, 10, and 20 are studied. As
expected, the law in (5.16) is the best in performance in all cases.

random variable realizations based distribution ~p = α[U(1), U(2), . . . , U(2b + 1)]. In all these

cases, α was selected to ensure
∑2b

i=0 pi = 1. From the plots, the distribution discovered in (5.16)

results in smallest detection error-probability (as expected) for all bandwidths. The number of

samples required to reach zero detection error probability increases with increasing bandwidth

but the optimal distribution in (5.16) is the one whose detection error probability decays fastest

to zero in all cases.

For the optimal distribution we also simulated the number of samples required to reduce the

empirical detection error probability Pe to 1% for fields of bandwidth 3, 5, 10, and 20 respectively.

The Fourier Series coefficients of each field was picked by a uniform random number generator.

A binary search algorithm was used to locate the sample size for 0.01−0.001 ≤ Pe ≤ 0.01+0.001.

The tolerance of 0.001 is used since the detection error probability is calculated as the fraction of

incorrectly detected samples from Monte Carlo simulations and so it need not be exactly equal

to 0.01. The results are plotted in Fig. 5.2.
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Figure 5.2: Number of samples required to reduce the empirical detection error probability
to 1% for fields of bandwidth 3, 5, 10, and 20
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Chapter 6

Field Estimation from Noisy Samples

In this chapter we will consider the case where the signal is sampled as described in Section 3.2

and the samples of the signal are then corrupted by zero mean, i.i.d, additive Gaussian noise

with known standard deviation σ.

6.1 The field estimation algorithm

Each uncorrupted samples g(T1), g(T2), . . . , g(Tn) has a value equal to g(isb) for some 0 ≤ i ≤ 2b

as discussed in Section 4.1. Assuming that the samples are corrupted by zero mean, i.i.d additive

Gaussian noise with standard deviation σ, the field detection algorithm is modified as follows:

1. The readings Y1 := g(T1) + η1, . . . , Yn := g(Tn) + ηn, with Ti unknown and in the set

{0, sb, . . . , 2bsb}, and ηi ∼ N (0, σ2) are collected.

2. Since Ti = ksb with probability pk, the readings Yi follow the probability distribution

fY (y) given by the following Gaussian Mixture Model(GMM):

fY (y) =
2b∑
k=0

pkG(y, g(ksb), σ
2) (6.1)

where

G(y, g(ksb), σ
2) =

1

σ
√

2π
e−

(y−g(ksb))
2

2σ2 (6.2)

3. The readings Y1, Y2, . . . , Yn are clustered using the well known Expectation Maximization
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Chapter 6. Field Estimation from Noisy Samples 23

(EM) algorithm [12], for GMM parameter estimation. The details of the algorithm are

given in Section 6.2.

4. The algorithm gives an estimate of the weights and means (analogous to type and value

in the noiseless case) of the GMM (σ is assumed to be known.) Let wk and µk be the

estimated weights and the corresponding means respectively for 0 ≤ k ≤ 2b. For large n,

the estimated weight wk for each mean will be near the correct pk in ~p.

5. The mean with smallest weight is assigned to g(0), the mean with next smallest weight is

assigned to g(sb), and so on till g(2bsb).

6.2 Overview of the EM Algorithm

The EM algorithm iteratively estimates the parameters of a GMM by creating a function for the

expectation of the log likelihood function using the current estimate of parameters (E-step) and

maximizing this expected log-likelihood to compute a new estimate of the parameters (M-step).

These two steps are repeated until the algorithm converges to a maximum of the log likelihood

function, to obtain an estimate of the means and the weights of each cluster.

In this work we use the EM algorithm for ’soft’ segmentation of the data, as discussed in [13].

The data comprises of the readings Yi which are segmented into clusters. A cluster Ck is defined

as Ck = {Yi : Yi = g(ksb) + ηi, ηi ∼ N (0, σ2)}. Thus there are 2b + 1 clusters in this case.

Define a membership matrix matrix γ and a random variable Zi such that Zi = k implies that

Yi belongs to cluster Ck. Then:

γik = P (Zi = k|Yi) (6.3)

The algorithm also requires an initial guess of the means µk which is provided using the

k-means++ algorithm [14]. The weights, wk are initially assumed to be uniformly distributed.

The variance of the clusters is known (σ2) and is fixed at this value. Each iteration of the

algorithm involves the following two steps:-

1) E-Step:

γik =
G(Yi, µk, σ

2)wk
2b∑
k=0

G(Yi, µk, σ2)wk

(6.4)
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2) M-Step:

µk =
n∑
i=0

Yiγik (6.5)

wk =

n∑
i=0

γik

n
(6.6)

The E-step computes γik by applying Bayes’ Theorem on the current parameter estimates.

The M-step uses the computed value of γik to come up with a new estimate of the parameters

that maximizes the expected data log-likelihood. The values of µk and wk estimated in the

M-step are substituted in the E-step of the next iteration and the process is repeated until the

estimates converge.

We use a ’soft’ formulation instead of a ’hard’ assignment of each sample to a single cluster.

The membership of a sample in a cluster is the posterior probability of the sample lying in that

cluster. We use this formulation because if the values of any two or more g(ksb) are very close(in

terms of Euclidean distance) then the corresponding clusters tend to overlap. Thus, samples

lying in such overlapping clusters could have originated from either of the sampling locations

making it difficult to assign them to a single cluster. Moreover since we are only interested in

the cluster means and weights and not in knowing which sample originated from which location,

the ’soft’ clustering makes more sense since it uses each sample to contribute to the estimate of

the means and weights of all clusters.

The final GMM estimated by the EM algorithm is:

f̂Y (y) =
2b∑
k=0

wkG(y, µk, σ
2) (6.7)

6.3 Simulation results

The field estimation algorithm of Section 6.1 was simulated using MATLAB for signals of band-

width (b) 3,5, and 10 respectively. For each value of b, 3 field estimation experiments were

conducted with sample sizes n = 1000, 10000, and 100000 respectively. For each value of n

10000 randomly generated signals were considered. For each signal, the samples were drawn as

described in Section 3.2 and then each sample was corrupted by Gaussian noise (µ = 0, σ = 0.05).

To measure the performance of the algorithm the following distortion metric was used:
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D =

1∫
0

|g̃(t)− g(t)|2dt

1∫
0

|g(t)|2dt
(6.8)

where D is the distortion, g̃(t) is th estimated signal, g(t) is the original signal and the limits

of the integral are so chosen to cover 1 period of the signal.

The results of the simulation are shown in Fig. 6.1, Fig. 6.2, Fig. 6.3. Histograms of the

distortion are plotted for each value of n for each bandwidth. The number of bins in each

histogram is 100.

As can be seen from the histograms, the performance of the algorithm deteriorates on in-

creasing the bandwidth. The number of signals estimated with a low value of distortion decreases

as we go from bandwidth 3 to bandwidth 10. More than 50% of the signals are reconstructed

with a very low value of distortion (first bin) for bandwidth 3 while the number reduces to about

18% for bandwidth 5 and less than 1% for bandwidth 10. Increasing the number of samples

drawn improves the performance of the algorithm slightly especially for the higher bandwidths

as attested by an increase in the height of the first bar of the histogram for bandwidths 5 and

10 on increasing the number of samples from 1000 to 10000.

We will now suggest an explanation for the deterioration in performance of the algorithm

with increasing bandwidth. It is known that for a normal distribution, N (µ, σ2), 99.7% of the

data lies within [µ−3σ, µ+3σ]. Consider 2 normal distributions with means x1 and x2, x2 > x1,

and the same standard deviation, σ. If x2− 3σ < x1 + 3σ or (x2−x1)2 < 36σ2 then the samples

drawn from these 2 distributions form clusters that overlap to a large extent. In our experiments

we have taken σ = 0.05, i.e. 36σ2 = 0.09.

In our experiments, samples are drawn from normal distributions with means g(ksb). For

any field g(t) define dg := min{(g(isb)− g(jsb))
2, 0 ≤ i, j ≤ 2b, i 6= j} as the minimum pairwise

squared Euclidean distance between the means. We computed dg for 10000 randomly generated

signals of bandwidths 3,5, and 10. Fig. 6.4 is a histogram of the results. It can be seen that

as the bandwidth increases the value of dg decreases and most of the values of dg lie close to

zero. In fact the percentage of signals with dg below 0.09 (36σ2) increases from about 81%

for bandwidth 3 to 98% for bandwidth 5 and 100% for bandwidth 10. This is expected since

the number of sampling locations increases with bandwidth but the sampling interval remains in

[0, 1] (one period) and hence the probability of the field values at 2 sampling locations lying close

to each other increases. As discussed above if dg falls below 36σ2 then the corresponding clusters
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overlap to a large extent which creates problems in the convergence of the EM algorithm.

The problem of overlapping clusters is a common problem in clustering especially with the

EM algorithm. Several approaches attempting to solve this problem exist in literature such as

[15], [16] . The application of these approaches to the present problem remains to be studied.

In all our analysis, the distribution of the noise is assumed to be Gaussian. If the distribution

of the noise is non-Gaussian, the mixture-model and the clustering algorithm will have to be

changed to suit the noise distribution.
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Figure 6.1: Results of the sampling and estimation experiment for 10000 randomly
generated signals of bandwidth 3. Histograms of the distortion are plotted for each sample
size (n)
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Figure 6.2: Results of the sampling and estimation experiment for 10000 randomly
generated signals of bandwidth 5. Histograms of the distortion are plotted for each sample
size (n)
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Figure 6.3: Results of the sampling and estimation experiment for 10000 randomly
generated signals of bandwidth 10. Histograms of the distortion are plotted for each
sample size (n)
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at the sampling locations, is compared for signals of bandwidth 3, 5 and 10. Histograms
of dg are plotted using 10000 randomly generated signals for each value of bandwidth
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Chapter 7

Sampling with a Uniform

Continuous Distribution

The sampling model introduced in our work had two main simplifying assumptions - the re-

striction of sampling locations to a discrete grid and the absence of measurement noise. The

previous chapter dealt with the case where samples were corrupted by Gaussian noise. In this

and the following chapter we consider the problem of estimating a field with samples obtained

from a known continuous distribution on its support.

Some of the works that deal with this case assume that order information on the sample

locations are known. While this is implicit in the case of sampling with a mobile sensor as in [3],

it is not clear how this information may be obtained if the sensors are static. In this chapter we

will also discuss a means of obtaining order information on sampling locations for static sensors.

7.1 Field reconstruction with samples at uniformly

distributed locations

Here we consider the case where the unknown sampling locations are realized according to

a uniform distribution anywhere in one period of the field, that is, T ∼ Uniform[0, 1]. Let

U1, U2, . . . , Un be the (random) sampling locations; then, the corresponding sampled field values
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are g(U1), g(U2), ...g(Un). The empirical cumulative distribution function

Fg,n(x) =
1

n

n∑
i=1

1(g(Ui) ≤ x) (7.1)

for x ∈ [−1, 1] completely characterizes the field values g(U1), g(U2), ...g(Un) (up to a permuta-

tion) and vice-versa. By the Glivenko-Cantelli theorem, for every x ∈ [−1, 1], Fg,n(x) in (7.1)

converges almost surely to P(g(U) ≤ x). For a uniform random variable, P(g(U) ≤ x) corre-

sponds to length of the level set {u : g(u) ≤ x}. It has been shown that a bandlimited field

when shifted or space-reversed results in the same length of level set. That is,

P(g(U) ≤ x) = P(g1(U) ≤ x) = P(g2(U) ≤ x) (7.2)

where g1(t) = g(t − θ) and g2(t) = g(θ − t) for any θ ∈ [0, 1]. This means by observing the

distribution P(g(U) ≤ x), x ∈ [−1, 1], the field g(t) cannot be inferred due to ambiguity in phase

and direction. However, it is not clear if these are the only ambiguities in the estimation of the

field. In other words, is it possible to claim that the field can be obtained up to a delay and

direction ambiguity as hinted in (7.2)? It is shown next that scale ambiguity is also present and

this makes sampling a spatial field with uniformly distributed sensors difficult.

Let g(t) be a field with bandwidth 2π. Consider the field g3(t) = g(mt) for any positive

integer m < b. Then g3(t) is bandlimited with bandwidth up to 2bπ. It will be shown that

P(g(U) ≤ x) = P(g3(U) ≤ x). (7.3)

The core idea behind the proof is the accounting of the length of level set. Let

{u : g(u) ≤ x} = [t0, t1] ∪ [t2, t3] ∪ . . . ∪ [tN−1, tN ] (7.4)

where t0, t1, . . . , tN depend on g(u) and x. Then, for m = 2,

{u : g3(u) ≤ x} (7.5)

= {u : g(2u) ≤ x} (7.6)

=

[
t0
2
,
t1
2

]
∪ . . . ∪

[
tN−1

2
,
tN
2

]
∪
[
t0 + 1

2
,
t1 + 1

2

]
∪

. . . ∪
[
tN−1 + 1

2
,
tN + 1

2

]
. (7.7)

30



Chapter 7. Sampling with a Uniform continuous distribution 31

Observe that the lengths of level sets in (7.4) and (7.7) are equal to

(t1 − t0) + (t3 − t2) + . . .+ (tN − tN−1) (7.8)

This is true for any g(t) and any x ∈ [−1, 1]. So g(t) and g(2t) have the same level sets and

consequently same distribution P(g(U) ≤ x). This result can be also shown in a similar manner

for m = 3, . . . , b. Thus, even if n → ∞, the field g(t) cannot be inferred uniquely from Fg,n(x)

which converges to P (g(U) ≤ x), x ∈ [−1, 1].

This result shows that it is not possible to uniquely estimate a field from samples obtained

according to a uniform continuous distribution on its support.

7.2 Order information on sample locations

It is shown in [2] that it is possible to infer a field uniquely from samples obtained according to

a uniform continuous distribution on its support if the order in which the samples are collected

is known. Here we discuss how this order information may be obtained. Consider a randomly

generated spatial field that is periodic, real-valued and bounded (period assumed to be 1) given

by:

G(t) =

b∑
k=−b

A[k] exp(j2πkt) (7.9)

The Fourier Series coefficients A[k] = Xk + jYk are generated randomly and vary with

time(A[k] = A[−k]∗ since the field is real valued). If sensors are deployed at points t1, t2 and t3

in the interval (0, 1) as shown in Fig 7.1, then we expect that as the field G(t) varies randomly,

the field values g(t1), g(t2) will be highly correlated (due to continuity) and will be uncorrelated

with g(t3). In other words if a large number of sensors are deployed at fixed but unknown

locations and are used to sample a field that changes randomly with time, then the readings of

a sensor will have the highest correlation with the readings of the sensor nearest to it.

To see this mathematically we need to make the following assumptions which are consistent

with our simulations in Chapter 5:

1. All Xk, Yk are i.i.d

2. E[Xk] = 0,E[Yk] = 0
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0 t1 t2 t3 1

G(t)

Figure 7.1: Random bandlimited, periodic field G(t) (period=1) sampled at locations
t1,t2,and t3

3. E[X2
k ] = S2,E[Y 2

k ] = S2

Let sensors be deployed at t1, t2 ∈ (0, 1) and let the corresponding field samples beG(t1), G(t2).

Consider the correlation coefficient between the samples:

r =
Cov(G(t1), G(t2))√

Var(G(t1))Var(G(t2))
(7.10)

The sample mean for G(t1) is given by:

E[G(t1)] = E[

b∑
k=−b

A[k] exp(j2πkt1)] (7.11)

=
b∑

k=−b
E[Xk + jYk] exp(j2πkt) = 0 (7.12)

Since E[Xk] = 0,E[Yk] = 0. Therefore the sample variance is given by:

Var(G(t1)) = E[G(t1)
2] (7.13)

= E[

b∑
k=−b

b∑
l=−b

A[k]A[l] exp(j2π(k + l)t1) (7.14)

Since all Xk, Yk are i.i.d and zero mean the above expression reduces to:

Var(G(t1)) = E[X2
0 ] + T1 + T2 (7.15)
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T1 is given by:

T1 = E[
b∑

k=−b,k 6=0

A[k]2 exp(j4πkt1)] = 0 (7.16)

since A[k]2 = X2
k−Y 2

k +2jXkYk and all Xk, Yk are i.i.d and zero mean, and E[X2
k ] = E[Y 2

k ] = S2

.

T2 is given by:

T2 = E[
b∑

k=−b,k 6=0

A[k]A[−k] exp(j2π(0))] = 0 (7.17)

=
b∑

k=−b,k 6=0

E[X2
k + Y 2

k ] (7.18)

= 4bS2 (7.19)

Thus:

Var(G(t1)) = (1 + 4b)S2 (7.20)

Since the final expression is independent of t1 we have:

Var(G(t2)) = (1 + 4b)S2 (7.21)

A similar procedure is followed to calculate the covariance:

Cov(G(t1), G(t2)) = E[G(t1)G(t2)] (7.22)

= E[

b∑
k=−b

b∑
l=−b

A[k]A[l] exp(j2π(kt1 + lt2))] (7.23)

= E[X2
0 ] + T1 + T2 (7.24)

This time T1 is given by:

T1 = E[

b∑
k=−b,k 6=0

A[k]2 exp(j2πk(t1 + t2))] = 0 (7.25)

for the same reasons as before.
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T2 is given by:

T2 = E[
b∑

k=−b,k 6=0

A[k]A[−k] exp(j2πk(t1 − t2))] = 0 (7.26)

=
b∑

k=−b,k 6=0

(E[X2
k + Y 2

k ]) exp(j2πk(t1 − t2)) (7.27)

= 4S2
b∑

k=1

cos[2πk(t1 − t2)] (7.28)

Therefore the covariance is given by:

Cov(G(t1), G(t2)) = S2(1 + 4
b∑

k=1

cos[2πk(t1 − t2)]) (7.29)

Substituting the variances and covariance in (7.10) we get the following expression for the

correlation coefficient:

r = C0 + C1

b∑
k=1

cos[2πkd] (7.30)

Here C0 = 1
4b+1 , C1 = 4

4b+1 , d = |t1−t2| since cos(−x) = cos(x). Since t1, t2 ∈ (0, 1), d ∈ (0, 1)

and so the functions cos(2πkd) for each k have common maxima at d→ 0+ and d→ 1−. Hence

r is maximum for values of d close to 0 or 1. We are interested in the maxima of d near 0 since

this means the sensor locations t1, t2 are close to each other. Keeping this in mind the following

procedure for finding the order informations is proposed:

1. n sensors are deployed uniformly at unknown locations t1, t2 . . . tn with arbitrary ordering

2. Two other sensors S0, S1 are fixed at the endpoints 0 and 1 respectively. Their locations

are known and the remaining n sensors are grouped into two categories, those closer S0

than to S1 (Group 0) those closer S1 than to S0 (Group 1)1. respectively)

3. Let the number of sensors in Group 0 (excluding S0)be n0 and the number of sensors in

Group 1 ((excluding S1)) be n1 (n0 + n1 = n)

4. All sensors (including S0, S1) take m readings of the field at m different time instants.

Since the field varies randomly with time, the underlying field at each of these m time

1This can be visualised as a network of sensors in mobile phones that ping off the nearest cell tower
(S0 and S1)
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instants is different

5. For Group 0, let the sensor whose readings have the highest correlation with the readings

of S0 be marked u1, let the sensor with the highest correlation to the readings of sensor

u1 be markeds u2 and so on upto un0 . Then the final ordering of the sensors (in terms of

sensor locations) in Group 0 is S0 < u1 < u2 < · · · < un0

6. For Group 1, let the sensor whose readings have the highest correlation with the readings

of S1 be marked vn1 , let the sensor with the highest correlation to the readings of sensor

vn1 be markeds vn1−1 and so on upto v1. Then the final ordering of the sensors (in terms

of sensor locations) in Group 1 is v1 < v2 < · · · < vn1 < S1

7. The final ordering of all the sensors deployed is S0 < u1 < u2 < · · · < un0 < v1 < v2 <

· · · < vn1 < S1

Using sensors S0 and S1 as reference points allows us to give a direction to our ordering.

Without this if we have a randomly chosen sensor w1, then its nearest neighbor (in terms of

maximum correlation) w2 could be located on either side of w1 since cos(−x) = cos(x). Also

dividing the sensors into two groups ensures that the maximum at d → 1− is not considered

since if |t1 − t2| → 1− then the sensors at locations t1 and t2 will lie in different groups.
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Chapter 8

Sampling with a General Continuous

Distribution

In this chapter we consider the estimation of finite support polynomial fields from samples

obtained at random locations according to a known (not necessarily uniform) distribution.

8.1 Sampling Model

Consider a polynomial, g(t) = a
(1)
0 + a

(1)
1 t + · · · + a

(1)
r tr with support [0, 1] sampled at points

T1, T2, . . . Tn i.i.d fT (t). The distribution fT (t), and the degree r of the polynomial are assumed

to be known but neither the sampling locations T1, T2, . . . Tn nor their ordering is known. The

field does not change with time. The situation is shown in Fig 8.1

The distribution of the samples g(T1), g(T2), . . . g(Tn) is governed by the coefficients ~a1 =

[a
(1)
0 , . . . a

(1)
r ]. Hence the problem of estimating the polynomial coefficients reduces to the problem

of estimating the parameters of the distribution of its samples. Since it is difficult to write a

0 1T1T2 T3 . . . Tn

g(t)

Figure 8.1: g(t) is a polynomial of known degree sampled at unknown points T1, T2, . . . Tn
with arbitrary (unknown) ordering
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closed form expression for the distribution of the samples we use the sample moments to estimate

the distribution parameters according to the well known Generalised Method of Moments [17].

Before we move on to the problem formulation it is important to highlight the reasons for

changing the model from sampling of bandlimited fields to sampling of polynomial fields:

1. The Generalised Method of Moments involves computing the parameters by solving a min-

imization problem. As we will see in the following section the objective function will be a

multivariate polynomial with the coefficients of g(t) as variables. Most of the existing lit-

erature on minimization of multivariate polynomials is applicable to real variables whereas

the Fourier Series Coefficients of bandlimited fields are generally complex numbers.

2. This also improves the generalisation of our model since we know from the Weierstrass

Approximation Theorem [18] that polynomials can be used to uniformly approximate any

continuous function in a finite interval as closely as desired

It is to be noted that the results in Chapters 3-6 hold for any field that can be uniquely

specified by its samples at a finite number of points, and this class of fields includes polynomials

of finite degree so the results hold even in this case.

8.2 Optimisation Problem Formulation

Define ~ak = ~a1 ∗ ~a1 ∗ . . . ~a1 = [a
(k)
0 , . . . a

(k)
kr ] where ∗ denotes convolution and it is applied k − 1

times.

The kth sample moment is estimated from the field samples as:

M̂k =
1

n

n∑
i=1

(g(Ti))
k (8.1)

=
1

n

n∑
i=1

(a
(1)
0 + a

(1)
1 Ti + · · ·+ a(1)r T ri )k (8.2)

= a
(k)
0 + a

(k)
1 m̂1 + · · ·+ a

(k)
kr m̂kr (8.3)

m̂l =
1

n

n∑
i=1

(Ti)
l (8.4)

(8.5)
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Analogously the kth population moment is given by:

Mk =

∫ 1

0
(g(t))kfT (t)(t)dt (8.6)

= a
(k)
0 + a

(k)
1 m1 + · · ·+ a

(k)
kr mkr (8.7)

ml =

∫ 1

0
tlfT (t)dt (8.8)

Define ∆ml = m̂l −ml. Since M̂k is an unbiased estimator of Mk its variance is given by:

E[(M̂l −Ml)
2] = E[(

lr∑
j=0

a
(l)
j ∆mj)

2] (8.9)

=

lr∑
j=0

lr∑
i=0

a
(l)
j a

(l)
i E[∆mi∆mj ] (8.10)

where:

E[∆mi∆mj ] = E[(m̂i −mi)(m̂j −mj)] (8.11)

= E[m̂im̂j ]−mimj (8.12)

=
1

n2

n∑
l1=1

n∑
l2=1

E[Xi
l1X

j
l2

]−mimj (8.13)

=
1

n2

n∑
l1=1,l1 6=l2

n∑
l2=1

E[Xi
l1 ]E[Xj

l2
] +

1

n2

n∑
l=1

E[Xi+j
l ]−mimj (8.14)

=
n(n− 1)

n2
mimj +

mi+j

n
−mimj (8.15)

=
mi+j −mimj

n
(8.16)

Thus:

E[(M̂l −Ml)
2] =

1

n

lr∑
j=0

lr∑
i=0

a
(l)
j a

(l)
i (mi+j −mimj) (8.17)

The term inside the summation depends only on the field being estimated and the distribution

on the sampling locations which are both fixed. Thus the average squared error between the

sample moments and the population moments decays linearly with sample size n. This leads

us to expect that the vector of field coefficients, ~a1 can be estimated by solving the following

optimization problem:
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~a1 = argmin
~a1

L∑
l=1

(M̂l −Ml)
2 (8.18)

a
(1)
i ∈ [−1, 1], i = 0, 1, . . . r (8.19)

The polynomial coefficients are chosen to lie within a fixed (known) range to ensure that the

polynomial (and its moments) are bounded.

The objective function is a multivariate polynomial with the elements ~a1 as variables. It is

clear that as n→∞ the true polynomial coefficients will be a point of global minima. However

such functions cannot be minimised using standard convex optimization methods such as the

method of steepest descent due to the proliferation of local minima. Methods such as [19], [20] for

the global optimisation of multivariate polynomials were tried but did not produce satisfactory

results. One of the key difficulties was in choosing L, the number of moment estimators required

to obtain a unique solution of 8.18 for all polynomials of a given degree. Since there are r + 1

unknown coefficients for a polynomial of degree r, at least r + 1 moments will be required to

obtain a unique solution to 8.18 but even choosing L as r + 1 or higher yielded convergence

very far away from the true solution in several cases. This led us to suspect that there exists a

class of signals for any distribution fT (t) on the sample locations such that 8.18 does not have

a unique solution. The following section deals with our analysis in this regard.

8.3 Non-Uniqueness of solutions

If f(t) is symmetric in [0, 1] i.e. fT (t) = fT (1 − t) then the fields g(t) and g(1 − t) will always

have the same moments. To see this consider:

Mk =

∫ 1

0
(g(t))kfT (t)dt (8.20)

=

∫ 1

0
(g(1− t))kfT (1− t)dt (8.21)

=

∫ 1

0
(g(1− t))kfT (t)dt (8.22)

which follows from the properties of the definite integral. Thus 8.18 will never have a unique

solution in this case.

For the case where the distribution fT (t) is asymmetric in [0, 1] consider two strictly mono-
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tonic (hence invertible) fields g1(t) and g2(t) lying in the same range. Assuming T ∼ fT (t) is

a random variable, let Y1 = g1(t) and Y2 = g2(t) with distributions P (Y1 ≤ y) = P (g1(T ) ≤

y), P (Y2 ≤ y) = P (g2(T ) ≤ y) respectively. Assuming that g1(t) is strictly increasing and g2(t)

is strictly decreasing we have (FT (t) is the CDF of T ):

P (g1(T ) ≤ y) = P (T ≤ g−11 (y)) = FT (g−11 (y)) (8.23)

P (g2(T ) ≤ y) = P (T ≥ g−12 (y)) = 1− FT (g−12 (y) (8.24)

Let S12 denote the (common) range of g1(t) and g2(t) and let h(t) = g−11 (g2(t)). Then the

following condition must be satisfied for the two distributions to be identical:

FT (g−11 (y)) + FT (g−12 (y)) = 1, ∀y ∈ S12 (8.25)

or:

FT (h(t)) + FT (t) = 1, ∀t ∈ [0, 1] (8.26)

The family of solutions to this is:

h(t) = g−11 (g2(t)) = F−1T (1− FT (t)) (8.27)

i.e. g1(t)=H(FT (t)) and g2(t) = H(1 − FT (t)) where H(y) is any function that is invertible in

y ∈ S12. An obvious solution with S12 = [0, 1] is to put H(y) as the identity function. (FT (t)

being a CDF is strictly increasing). For other ranges one can use a linear H(y) or any other

invertible transformation that maps FT (t) and 1 − FT (t) to the desired range to satisfy the

condition (8.25).

Thus the functions g1(t) and g2(t) of the form given above, have the same distribution (and

hence the same moments) and thus for any distribution fT (t) on the sampling locations if either

of g1(t) or g2(t) is the field to be estimated then the optimization problem (8.18) does not have

a unique solution.

Moreover consider two sequences of functions, one converging to g1(t) and the other con-

verging to g2(t). Since the random variables that represent samples drawn from these functions

according to fT (t) converge in distribution to the distributions of g1(t) and g2(t) respectively

their moments converge to the corresponding moments (which are equal). This indicates that as
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the functions move closer to g1(t) and g2(t) respectively more and more moments will be required

to distinguish between their distributions in terms of (8.18) and thus it is not possible to put

an upper bound on L, the number of moment estimators required to find a unique solution to

(8.18) for all fields.

The above remarks are made for general fields but in our problem we are considering the

estimation of polynomial fields. If fT (t) is a polynomial, then so is FT (t) and hence the above

observations hold for polynomial fields of degree greater than or equal to the degree of FT (t)

since there exist fields belonging to this class, as discussed, that cannot be uniquely determined

by solving (8.18). It might be possible to uniquely specify all fields of degree lower than that of

FT (t) by solving (8.18) but typically that would imply that to estimate high degree polynomial

fields we require distributions that have an even higher degree and such distributions would be

hard to realize.

In most of our attempts at obtaining a solution to the problem (8.18) computationally we

assumed a polynomial distribution fT (t) on the sampling locations. There are two reasons for

this:

1. It is difficult to evaluate the integral ml =
∫ 1
0 t

lfT (t)dt for higher values of l if fT (t) is not

a polynomial

2. Any non-polynomial continuous fT (t) can be uniformly approximated by a polynomial to

the desired level of accuracy since it has finite support [0,1] (Weierstrass Approximation

Theorem)
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Chapter 9

Conclusions

The detection and estimation of fields using location-unaware sensors has been addressed in this

work.

The first part of the work deals with the case when sensor locations were restricted to an

equi-spaced discrete grid. Using an algorithm, which clusters distinct field values and records

their types, field detection can be performed. It was shown that the detection error-probability

decreases exponentially fast in the number of sensors deployed. The optimal distribution for

maximizing the error-probability exponent was derived and was shown to perform better than

other distributions for different choices of signal bandwidth. The algorithm was also extended

to the case where there is measurement noise and the effects of changing the bandwidth and the

sample size were studied for this case.

The second part of the work deals with the case where the sensors are deployed according

to an arbitrary continuous distribution in the field’s support. Additions to existing results were

derived that strengthen the conclusion that if the sensors are uniformly distributed then the field

cannot be uniquely inferred without order information on the sensor locations. A procedure for

estimating order information when sensors are deployed uniformly was given which can aid

existing works most of which deal with estimating fields from ordered samples. It was also

shown that for an arbitrary continuous distribution on the sensor locations there exist a large

class of fields which cannot be uniquely specified which emphasizes the necessity for restricting

sensor locations to a discrete grid or knowing order information on sensor locations.

The detection of fields from samples at locations restricted to a discrete grid but with error

in locations is a problem lying at the intersection of the above problems and hence is interesting

to explore. This is left for a future work.
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