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Introduction

Polyphonic sound event detection in real life recordings

Goal: detect which sources are active, beginning and ending moments.
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Introduction

Polyphonic sound event detection

@ A multilabel classification task.
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Introduction

Polyphonic sound event detection

@ A multilabel classification task.

e Map input signal to class labels in short time windows (~50ms)
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Introduction

Previous work

Context dependent
¢ GMM+HMM

e Nonnegative matrix factorisation (NMF)
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Introduction

Previous work

Context dependent

o GMM+HMM

e Nonnegative matrix factorisation (NMF)
Context independent

@ Deep feedforward neural networks (FNN)
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Method

System overview
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Method

Feature extraction

Normalization

50 ms frames, 50% overlap
Short-time Fourier Transform

Mel filterbank

Logarithm

Mean 0 and unit variance in each band

Sequence
splitting

Log mel energies, ZMUV, split in sequences at three different timescales
(10, 25, 100 frames).
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Method

Feature extraction

Sequences

Normalization

50 ms frames, 50% overlap
Short-time Fourier Transform

Mel filterbank

Logarithm

Mean 0 and unit variance in each band

Sequence
splitting

b

Log mel energies, ZMUV, split in sequences at three different timescales
(10, 25, 100 frames).

The data needs to be annotated: each class is marked as active (1) or
inactive (0) in each frame.
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Recurrent neural network (RNN)

For an input sequence {xi, ..., x7}, compute a sequence of hidden
activations {hy,...,ht} and output vectors {y1,...,¥7} as

h, = F(W"x, + WMh,_; + b") (1)
§: = G(WYh, + 1) (2)

unfolded representation

Output layer

Hidden layer

Input layer

Figure: On the left, a recurrent neural network with 1 hidden layer and a single
neuron. On the right, the same network unfolded in time over T steps.

G. Parascandolo, H. Huttunen, T. Virtanen RNNs for polyphonic SED March 24, 2016



Method

Bidirectional RNN (BRNN) ?

unfolded representation

time

\4

Figure: A bidirectional recurrent neural network with one hidden layer and two
hidden neurons unfolded in time.

'Schuster et al., IEEE Trans. on Sgn. Processing (1997)
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Model

@ Bidirectional RNN with LSTM units
(BLSTM)
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Model

@ Bidirectional RNN with LSTM units

(BLSTM) '
@ Multiple stacked recurrent hidden 3 fhai - -
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Model

@ Bidirectional RNN with LSTM units
(BLSTM)

@ Multiple stacked recurrent hidden = =
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@ One output vector for each frame Q@@@@g@@@@@@@@@@
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Model

@ Bidirectional RNN with LSTM units
(BLSTM)

@ Multiple stacked recurrent hidden
layers

@ One output vector for each frame
(" sequence to sequence”)

@ Output layer with sigmoids predicts \ 3+ +5 \ + \ + \ z+ +5+ + \ 5+ \ 5+
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_ Method |
Model

@ Bidirectional RNN with LSTM units

(BLSTM)

@ Multiple stacked recurrent hidden
layers

@ One output vector for each frame
("sequence to sequence”)

@ Output layer with sigmoids predicts
posterior probabilities for each class
of being active. Multilabel = no
softmax

@ At test time threshold predictions
for binary activities
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Data augmentation

Block 1 Block 2 Block 3 Block b
H . g
Three techniques: : 8|
= J= Mt =
@ Block mixing
E [ Car engine
k| T {iog barking T
[ footstef ] tstep
Block 143
car engine
| [ dog barking
Tootstep ]

G. Parascandolo, H. Huttunen, T. Virtanen RNNs for polyphonic SED March 24, 2016



Data augmentation

Three techniques:
@ Block mixing

@ Time stretching
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Data augmentation

Window for STFT shifted forward by sub-frame length

Three techniques:
@ Block mixing
@ Time stretching
@ Sub-frame time shifting

Mel bands
-ts8 88y

Original window alignment

March 24, 2016
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Data augmentation

Three techniques:
@ Block mixing
@ Time stretching

@ Sub-frame time shifting
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Data augmentation

Three techniques:
@ Block mixing
@ Time stretching
@ Sub-frame time shifting

All performed directly in the
time-frequency domain, on
the extracted features.
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Evaluation

Dataset

CASA 61 classes from 10 contexts, real life recordings.
18 hours. 5 folds of training, validation and test.
Average polyphony 2.53
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Dataset
CASA 61 classes from 10 contexts, real life recordings.

18 hours. 5 folds of training, validation and test.
Average polyphony 2.53

T
057 295

30 % 21.3 o

20% | 125 78 a

102%) B = 27 03 |

0% 1 2 3 4 5 6 7
Polyphony

Pctg. of data

Augmentations:
@ x16 all combined (in the tables +DA)
e Block mixing: 20 blocks per context, mixing 2 at the time x9.5
o Time stretching: stretching coeff {0.7, 0.85, 1.2, 1.5} x4.25
e Sub-frame time shifting: three times x3
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Evaluation

Metrics

Overall metric is the average of the scores in each of the 10 contexts.
Q@ Framewise F1
@ 1l-second F1
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Evaluation

Neural nets used in the experiment

@ 40 input neurons, each reading one band of the log mel energies
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Evaluation

Neural nets used in the experiment

@ 40 input neurons, each reading one band of the log mel energies
@ 4 recurrent (BLSTM) hidden layers
@ 200 LSTM blocks in each (100 forwards, 100 backwards)
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Evaluation

Neural nets used in the experiment

40 input neurons, each reading one band of the log mel energies
4 recurrent (BLSTM) hidden layers

200 LSTM blocks in each (100 forwards, 100 backwards)

850K parameters in total
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Neural nets used in the experiment

40 input neurons, each reading one band of the log mel energies
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Evaluation

Neural nets used in the experiment

40 input neurons, each reading one band of the log mel energies
4 recurrent (BLSTM) hidden layers

200 LSTM blocks in each (100 forwards, 100 backwards)

850K parameters in total

Optimizer: RMSprop

Objective function: RMSE (cross entropy didn’t work as well)
Package: Currennt (CUDA/C++)
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Evaluation

Neural nets used in the experiment

40 input neurons, each reading one band of the log mel energies
4 recurrent (BLSTM) hidden layers

200 LSTM blocks in each (100 forwards, 100 backwards)

850K parameters in total

Optimizer: RMSprop

Objective function: RMSE (cross entropy didn’t work as well)
Package: Currennt (CUDA/C++)

5 nets trained from random init for each fold, then pick the best on
validation.
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Evaluation

Neural nets used in the experiment

40 input neurons, each reading one band of the log mel energies
4 recurrent (BLSTM) hidden layers

200 LSTM blocks in each (100 forwards, 100 backwards)

850K parameters in total

Optimizer: RMSprop

Objective function: RMSE (cross entropy didn’t work as well)
Package: Currennt (CUDA/C++)

5 nets trained from random init for each fold, then pick the best on
validation.

o At test time 100-frames sequences, threshold at 0.5
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Evaluation

Neural nets used in the experiment

40 input neurons, each reading one band of the log mel energies
4 recurrent (BLSTM) hidden layers

200 LSTM blocks in each (100 forwards, 100 backwards)

850K parameters in total

Optimizer: RMSprop

Objective function: RMSE (cross entropy didn’t work as well)
Package: Currennt (CUDA/C++)

5 nets trained from random init for each fold, then pick the best on
validation.

At test time 100-frames sequences, threshold at 0.5
Also tests using only LSTM (no bidirectional)
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Evaluation

Neural nets used in the experiment

40 input neurons, each reading one band of the log mel energies
4 recurrent (BLSTM) hidden layers

200 LSTM blocks in each (100 forwards, 100 backwards)

850K parameters in total

Optimizer: RMSprop

Objective function: RMSE (cross entropy didn’t work as well)
Package: Currennt (CUDA/C++)

5 nets trained from random init for each fold, then pick the best on
validation.

At test time 100-frames sequences, threshold at 0.5
Also tests using only LSTM (no bidirectional)

No smoothing step required, RNN takes care of temporal continuity
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Evaluation

Results

Comparing to the approach in [Cakir et al., 2015], which uses a FNN

(MLP with maxout) with 1.6M parameters (double those of the RNN),
where the outputs are smoothed using a median filter.
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Evaluation

Results

Comparing to the approach in [Cakir et al., 2015], which uses a FNN
(MLP with maxout) with 1.6M parameters (double those of the RNN),
where the outputs are smoothed using a median filter.

Table: Overall F1 scores, as average of individual contexts scores, for the FNN,
the proposed LSTM and BLSTM, and BLSTM with data augmentation (4+DA).

Method F]-Angram F]-l-sec
FNN [Cakir et al., 2015] 58.4% 63.0%
LSTM 62.5% 63.8%
BLSTM 64.0% 64.6%
BLSTM+DA 64.7% 65.5%

BLSTM+DA improves the performance over the FNN by relative 15.1%
and 6.8% for FlaygFram and Fligec respectively.
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Evaluation

FlAngram

BLSTM BLSTM+DA

Results — individual contexts
FNN
basketball  70.2% 77.4%
beach 49.7%  46.6%
bus 43.8% 45.1%
car 53.2% 67.9%
hallway 478% 58.1%
office 77.4%  79.9%
restaurant  69.8% 76.5%
shop 51.5% 61.2%
street 62.6%  65.3%
stadium 58.2% 61.7%
average 58.4%  64.0%

78.5%
49.6%
49.4%
71.8%
54.8%
74.4%
77.8%
61.1%
65.2%
64.3%
64.7%
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Results — polyphony

Quite robust to polyphony increase

70% T T T T T T
65% |-
o 60%
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® 55% |-
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45% —+ BLSTM{DA
0, | | | |
40% 1 2 3 4 5 6
Polyphony

G. Parascandolo, H. Huttunen, T. Virtanen RNNs for polyphonic SED March 24, 2016



Evaluation

Demo

Demo timel
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Evaluation

Discussion

© RNNs improve over FNNs in polyphonic SED, and with half the
parameters.
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© RNNs improve over FNNs in polyphonic SED, and with half the
parameters.
@ Overfitting, the main issue encountered = much more data needed

© Data augmentation helps slightly reducing overfitting.
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Evaluation

Discussion

© RNNs improve over FNNs in polyphonic SED, and with half the
parameters.

@ Overfitting, the main issue encountered = much more data needed
© Data augmentation helps slightly reducing overfitting.
@ Quite robust to high polyphony.
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Evaluation

The End
— Q&A —
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