Recurrent neural networks for polyphonic sound event detection in real life recordings

Giambattista Parascandolo, Heikki Huttunen, Tuomas Virtanen

Tampere University of Technology

giambattista.parascandolo@tut.fi

March 24, 2016

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

March 24, 2016

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

March 24, 2016

æ

<ロ> (日) (日) (日) (日) (日)

Polyphonic sound event detection in real life recordings

Goal: detect which sources are active, beginning and ending moments.

→

Polyphonic sound event detection

• A multilabel classification task.

• Map input signal to class labels in short time windows (\sim 50ms)

G. Parascandolo, H. Huttunen, T. Virtanen

- 4 目 ト - 4 日 ト - 4 日 ト

Polyphonic sound event detection

- A multilabel classification task.
- Map input signal to class labels in short time windows (\sim 50ms)

∃ →

- N

< 47 ▶ <

Previous work

Context dependent

- GMM+HMM
- Nonnegative matrix factorisation (NMF)

Context independent

• Deep feedforward neural networks (FNN)

3

- 4 同 6 4 日 6 4 日 6

Previous work

Context dependent

- GMM+HMM
- Nonnegative matrix factorisation (NMF)

Context independent

• Deep feedforward neural networks (FNN)

< 4 → <

3

System overview

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

March 24, 2016

3

◆□> ◆圖> ◆臣> ◆臣>

System overview

G. Parascandolo, H. Huttunen, T. Virtanen

March 24, 2016

3

イロン イヨン イヨン イヨン

System overview

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

March 24, 2016

3

ヘロト 人間 ト くほ ト くほ トー

System overview

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

March 24, 2016

3

・ロト ・聞ト ・ヨト ・ヨト

Feature extraction

Log mel energies, ZMUV, split in sequences at three different timescales (10, 25, 100 frames).

The data needs to be annotated: each class is marked as *active* (1) or *inactive* (0) in each frame.

イロト イポト イヨト イヨト

Feature extraction

Log mel energies, ZMUV, split in sequences at three different timescales (10, 25, 100 frames).

The data needs to be annotated: each class is marked as *active* (1) or *inactive* (0) in each frame.

(日) (周) (三) (三)

Recurrent neural network (RNN)

For an input sequence $\{\mathbf{x}_1, ..., \mathbf{x}_T\}$, compute a sequence of hidden activations $\{\mathbf{h}_1, ..., \mathbf{h}_T\}$ and output vectors $\{\mathbf{\hat{y}}_1, ..., \mathbf{\hat{y}}_T\}$ as

Figure: On the left, a recurrent neural network with 1 hidden layer and a single neuron. On the right, the same network unfolded in time over T steps.

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

March 24, 2016

3

イロト イポト イヨト イヨト

Bidirectional RNN (BRNN)¹

Figure: A bidirectional recurrent neural network with one hidden layer and two hidden neurons unfolded in time.

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

Model

Bidirectional RNN with LSTM units (BLSTM)

- Multiple stacked recurrent hidden layers
- One output vector for each frame ("sequence to sequence")
- Output layer with sigmoids predicts posterior probabilities for each class of being active. Multilabel ⇒ no softmax
- At test time threshold predictions for binary activities

(日) (周) (三) (三)

э

Model

- Bidirectional RNN with LSTM units (BLSTM)
- Multiple stacked recurrent hidden layers
- One output vector for each frame ("sequence to sequence")
- Output layer with sigmoids predicts posterior probabilities for each class of being active. Multilabel ⇒ no softmax
- At test time threshold predictions for binary activities

(日) (周) (三) (三)

3

Model

- Bidirectional RNN with LSTM units (BLSTM)
- Multiple stacked recurrent hidden layers
- One output vector for each frame ("sequence to sequence")
- Output layer with sigmoids predicts posterior probabilities for each class of being active. Multilabel => no softmax
- At test time threshold predictions for binary activities

(日) (周) (三) (三)

э

Model

- Bidirectional RNN with LSTM units (BLSTM)
- Multiple stacked recurrent hidden layers
- One output vector for each frame ("sequence to sequence")
- Output layer with sigmoids predicts posterior probabilities for each class of being active. Multilabel ⇒ no softmax
- At test time threshold predictions for binary activities

- 4 回 ト - 4 回 ト

Model

- Bidirectional RNN with LSTM units (BLSTM)
- Multiple stacked recurrent hidden layers
- One output vector for each frame ("sequence to sequence")
- Output layer with sigmoids predicts posterior probabilities for each class of being active. Multilabel ⇒ no softmax
- At test time threshold predictions for binary activities

< 4 → <

Three techniques:

- Block mixing
- Time stretching
- Sub-frame time shifting
- All performed directly in the time-frequency domain, on the extracted features.

3

イロト イポト イヨト イヨト

Three techniques:

- Block mixing
- Time stretching

Sub-frame time shifting
All performed directly in the time-frequency domain, on the extracted features.

3

(日) (周) (三) (三)

Three techniques:

- Block mixing
- Time stretching
- Sub-frame time shifting

All performed directly in the time-frequency domain, on the extracted features.

< 回 > < 三 > < 三 >

Three techniques:

- Block mixing
- Time stretching
- Sub-frame time shifting

All performed directly in the time-frequency domain, on the extracted features.

3

< 回 ト < 三 ト < 三 ト

Three techniques:

- Block mixing
- Time stretching
- Sub-frame time shifting

All performed directly in the time-frequency domain, on the extracted features.

3. 3

Dataset

CASA 61 classes from 10 contexts, real life recordings. 18 hours. 5 folds of training, validation and test. Average polyphony 2.53

Augmentations:

- ×16 all combined (in the tables +DA)
 - Block mixing: 20 blocks per context, mixing 2 at the time $\times 9.5$
 - Time stretching: stretching coeff $\{0.7, 0.85, 1.2, 1.5\} \times 4.25$
 - Sub-frame time shifting: three times ×3

Dataset

CASA 61 classes from 10 contexts, real life recordings. 18 hours. 5 folds of training, validation and test. Average polyphony 2.53

Augmentations:

- \times 16 all combined (in the tables +DA)
 - Block mixing: 20 blocks per context, mixing 2 at the time $\times 9.5$
 - Time stretching: stretching coeff {0.7, 0.85, 1.2, 1.5} $\times 4.25$
 - Sub-frame time shifting: three times $\times 3$

Metrics

Overall metric is the average of the scores in each of the 10 contexts.

- Framewise F1
- 2 1-second F1

3

イロト イポト イヨト イヨト

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

э.

・ロン ・四 ・ ・ ヨン ・ ヨン

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

э.

(日) (周) (三) (三)

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

э.

イロト イポト イヨト イヨト

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

э.

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

э.

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

= nar

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

э.

(日) (周) (三) (三)

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

э.

イロト 不得下 イヨト イヨト

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

= nar

イロト 不得下 イヨト イヨト

- 40 input neurons, each reading one band of the log mel energies
- 4 recurrent (BLSTM) hidden layers
- 200 LSTM blocks in each (100 forwards, 100 backwards)
- 850K parameters in total
- Optimizer: RMSprop
- Objective function: RMSE (cross entropy didn't work as well)
- Package: Currennt (CUDA/C++)
- 5 nets trained from random init for each fold, then pick the best on validation.
- At test time 100-frames sequences, threshold at 0.5
- Also tests using only LSTM (no bidirectional)
- No smoothing step required, RNN takes care of temporal continuity

э.

イロト 不得下 イヨト イヨト

Results

Comparing to the approach in [Cakir et al., 2015], which uses a FNN (MLP with maxout) with 1.6M parameters (double those of the RNN), where the outputs are smoothed using a median filter.

Table: Overall F1 scores, as average of individual contexts scores, for the FNN, the proposed LSTM and BLSTM, and BLSTM with data augmentation (+DA).

Method	$F1_{AvgFram}$	$F1_{1-sec}$
FNN [Cakir et al., 2015]	58.4%	63.0%
LSTM	62.5%	63.8%
BLSTM	64.0%	64.6%
BLSTM+DA	64.7%	65.5%

BLSTM+DA improves the performance over the FNN by relative 15.1% and 6.8% for $F1_{AvgFram}$ and $F1_{1-sec}$ respectively.

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

March 24, 2016

Results

Comparing to the approach in [Cakir et al., 2015], which uses a FNN (MLP with maxout) with 1.6M parameters (double those of the RNN), where the outputs are smoothed using a median filter.

Table: Overall F1 scores, as average of individual contexts scores, for the FNN, the proposed LSTM and BLSTM, and BLSTM with data augmentation (+DA).

Method	$F1_{AvgFram}$	F1 _{1-sec}
FNN [Cakir et al., 2015]	58.4%	63.0%
LSTM	62.5%	63.8%
BLSTM	64.0%	64.6%
BLSTM+DA	64.7%	65.5%

BLSTM+DA improves the performance over the FNN by relative 15.1% and 6.8% for $F1_{AvgFram}$ and $F1_{1-sec}$ respectively.

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

Results — individual contexts

	$F1_{AvgFram}$		
	FNN	BLSTM	BLSTM+DA
basketball	70.2%	77.4%	78.5%
beach	49.7%	46.6%	49.6%
bus	43.8%	45.1%	49.4%
car	53.2%	67.9%	71.8%
hallway	47.8%	58.1%	54.8%
office	77.4%	79.9%	74.4%
restaurant	69.8%	76.5%	77.8%
shop	51.5%	61.2%	61.1%
street	62.6%	65.3%	65.2%
stadium	58.2%	61.7%	64.3%
average	58.4%	64.0%	64.7%

G. Parascandolo, H. Huttunen, T. Virtanen

э.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Results — polyphony

Quite robust to polyphony increase

э

Evaluation

Demo time!

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

March 24, 2016

3

<ロ> (日) (日) (日) (日) (日)

RNNs improve over FNNs in polyphonic SED, and with half the parameters.

- ② Overfitting, the main issue encountered \implies much more data needed
- Oata augmentation helps slightly reducing overfitting.
- Quite robust to high polyphony.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- RNNs improve over FNNs in polyphonic SED, and with half the parameters.
- ② Overfitting, the main issue encountered \implies much more data needed
- Oata augmentation helps slightly reducing overfitting.

Quite robust to high polyphony.

3

- RNNs improve over FNNs in polyphonic SED, and with half the parameters.
- ② Overfitting, the main issue encountered \implies much more data needed
- Oata augmentation helps slightly reducing overfitting.

Quite robust to high polyphony.

3

- 4 週 ト - 4 三 ト - 4 三 ト -

- RNNs improve over FNNs in polyphonic SED, and with half the parameters.
- ② Overfitting, the main issue encountered \implies much more data needed
- Oata augmentation helps slightly reducing overfitting.
- Quite robust to high polyphony.

3

(4 回) (4 \Pi) (4 \Pi)

The End — Q&A —

G. Parascandolo, H. Huttunen, T. Virtanen

RNNs for polyphonic SED

March 24, 2016

3

<ロ> (日) (日) (日) (日) (日)