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Clustering

I Find node partition such that nodes within partition are similar

⇒ Ill defined: What is similar? Why a partition?

I Similarity entails inherent notion of scale ⇒ Hierarchical clustering

I All scales are important ⇒ Nested cluster family indexed by scale

I Datasets are very rarely separable into clean partitions

I Some points are. Others could be members of multiple “partitions”
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Clustering

I Find node partition such that nodes within partition are similar

⇒ Ill defined: What is similar? Why a partition?

I Similarity entails inherent notion of scale ⇒ Hierarchical clustering

I All scales are important ⇒ Nested cluster family indexed by scale

I Datasets are very rarely separable into clean partitions

I Some points are. Others could be members of multiple “partitions”

????
??

I Allow classification of some elements into multiple partitions
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Hierarchical overlapping clustering

I Points in multiple partitions? ⇒ Coverings instead of partitions

I Scale also a problem ⇒ Nested family of coverings indexed by scale

I We know that in clustering

⇒ Equivalences ⇒ Partitions ⇒ Nested partitions ⇒ Ultrametrics

I We will see that in overlapping clustering

⇒ Tolerances ⇒ Coverings ⇒ Nested coverings ⇒ Cut metrics

I Obtain cut metrics as linear combinations of ultrametrics

I Overlapping clustering is not just an interesting curiosity

I Badly written numbers ⇒ Classify in two clusters to avoid mistakes

I Shakespeare’s plays, Fletcher’s play, and Henry VIII
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Clustering (non-hierarchical)

I Network N = (X ,AX ) with nodes X and dissimilarities AX

I Clusters = Partitions = Nonintersecting subsets that cover space X

PX = {B1, . . . ,Bm},
m⋃
i=1

Bi = X , Bi ∩ Bj = ∅

I Equivalence relation: Reflexive (x ∼ x). Symmetric (x ∼ x ′ ⇔ x ′ ∼ x).

⇒ Transitive ⇒ x ∼ x ′, x ′ ∼ x ′′ ⇒ x ∼ x ′′

I A partition is defined by an equivalence relation (converse true as well)

I A partition appears the moment we adopt an equivalence relation
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Hierarchical clustering

I Dendrogram DX = {DX (δ), δ ≥ 0}: collection of partitions at scale δ

I Partitions DX (δ) are nested ⇒ δ ≤ δ′, x ∼δ x ′ ⇒ x ∼δ′ x ′

I Once two nodes are deemed similar, they stay clustered

I Dendrograms DX are equivalent to ultrametrics uX
I uX : Metric that satisfies the strong triangle inequality

⇒ uX (x , x ′′) ≤ max{uX (x , x ′), uX (x ′, x ′′)}
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Overlapping clustering

I Clusters = Coverings = Possibly intersecting subsets that cover space X

QX = {C1, . . . ,Cm},
m⋃
i=1

Ci = X , Ci ∩ Cj = Cij

I Cij need not be the emptyset ∅

I Tolerance relation:

⇒ Reflexive (x ↔ x)

⇒ Symmetric (x ↔ x ′ ⇔ x ′ ↔ x)

⇒ Not transitive

I Tolerance relations induce coverings
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Hierarchical overlapping clustering

Theorem
If, for each δ ≥ 0, the covering KX (δ) is induced by the tolerance relation
obtained from a cut metric

cX (x , x ′) ≤ δ ⇒ x ↔δ x
′

Then the collection of coverings KX = {KX (δ), δ ≥ 0} is nested.

I Coverings KX (δ) are nested ⇒ δ ≤ δ′, x ↔δ x
′ ⇒ x ↔δ′ x

′

I Once two nodes become related, it cannot be undone

I Cut metric: Similar role to ultrametrics in building equivalence relations

I Nested collection of coverings: Analogous to dendrograms
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Cut metrics

I First, define a cut semimetric δS(x , x ′) of a subset S of the node set

δS(x , x ′) = I {S ∩ {x , x ′} 6= ∅} I
{
SC ∩ {x , x ′} 6= ∅

}
I Cuts the node set in two: unit distance for nodes in opposite sides

I Define cut metric: cX . Conic combination of cut semimetrics

cX (x , x ′) =
∑
S⊆X

λSδS(x , x ′) , λS ≥ 0

I All possible subsets S ⊆ X , each one with different weight λS
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Construction of cut metrics

Theorem
A convex combination of ultrametrics results in a cut metric

cX (x , x ′) =
∑

kiuX ,i (x , x
′) ,

∑
ki = 1 , ki ≥ 0

I We know how to obtain ultrametrics ⇒ Hierarchical clustering H
I Dithering: Perturb the dissimilarity function with random noise

I Get ultrametric ũX (x , x ′) of perturbed network by applying H
I Get cut metric combining the ultrametrics

cX (x , x ′) = E[ũX (x , x ′)]
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Parallelism

Hierarchical
Method non-Overlapping: H Overlapping: O

Metric Ultrametric: uX (x , x
′) Cut Metric: cX (x , x

′)

Relation Equivalence: ∼ Tolerance: ↔

Grouping Partition: PX = {Bi} Covering: QX = {Ci}

Hierarchy Dendrogram: DX Nested Covering: KX

I Hierarchical Non-Overlapping clustering

⇒ Equivalences ⇒ Partitions ⇒ Dendrograms ⇒ Ultrametrics

I Hierarchical Overlapping clustering

⇒ Tolerances ⇒ Coverings ⇒ Nested coverings ⇒ Cut metrics
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Overlapping

I Overlapping function fol : R+ → N0

I Helps in selecting relevant resolutions δ to observe

I For each δ, counts the number of overlapping nodes

fol(δ) =
n∑

k=1

I {Ci ∩ Cj = {xk}, i 6= j , i , j = 1, . . . ,m(δ)}

I We use fol to define clusterability of a dataset

I fol(δ) = 0 for some meaningful δ ⇒ no overlap ⇒ partition

⇒ Cannot be δ = 0 ⇒ fol(0) = 0 but all nodes separated

⇒ Cannot be large δ ⇒ fol(δ) = 0 but all nodes together

I In general, we are interested in coverings with small overlap
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Example: two clouds

I Setting: d = 1,D = 13. Dissimilarity: distance between points

I This dataset has two evident clusters

I Dithering: 100 realizations.

I Gaussian noise of power: 10−1×min distance

I Hierarchical non-overlapping clustering H: single linkage

I Overlapping function, δ = 1.11 ⇒ Similar to d
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Example: dumbbell network

I Setting: d = 1. Dissimilarity: distance between points

I There are no two clear clusters

I Dithering: 100 realizations.

I Gaussian noise of power: 1×min distance

I H: single linkage ⇒ ultrametric

I Overlapping function, δ = 2.17
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Two digit classification

I Digits: 1, 7. 100 each

I 20 PCA components

I H: Ward ⇒ ultrametric

I Dithering: 100 realizations

I Gaussian noise of power: 10−2×min PCA distance

I Output: {1(×100), 7}, {7(×99)} ⇒ 0.5% error rate
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Four digit classification

I Digits: 0, 1, 2, 7. 100 each

I 20 PCA components

I H: Ward ⇒ ultrametric

I Dithering: 100 realizations

I Gaussian noise of power: 5 · 10−3×min PCA distance

I Output: {0(×100), 2(×3)}, {1(×99), 7(×2)}, {1, 2(×86), 7(×3)},
{2(×11), 7(×95)} ⇒ 5% error rate
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Shakespeare and Fletcher

I Word adjacency networks ⇒ Author profiles

⇒ Classify plays by author ⇒ Identify co-authored plays

I Dissimilarity: Distance from play to profile

I H: Ward. Dithering: 100 realizations

I Gaussian noise of power: 4×min distance

I Overlap: 2 co-authored plays and 4 Fletcher plays
{S (x 33), F (x1), F (x 4), S&F (x2)}; {F (x 16), F (x4), S&F (x 2)}
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Shakespeare, Chapman and Jonson

I H: average ⇒ ultrametric

I Gaussian noise

I Noise power: 1×min distance

I Dithering: 100 realizations

I Output:
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I Shakespeare plays classified correctly: {S (x33)}
I Overlap: {J (x16), C&J}; {J, C (x13), J, C}; {J, C, C&J}
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Conclusions

I Hierarchical: Collection of groups. Levels of similarity

I Overlapping: Allow nodes to belong to more than one cluster

I Achieved through the use of cut metrics to get nested coverings

I Get cut metrics from ultrametrics through dithering

I Identify nodes that have traits of more than one group

I Applicable to data that is not partitionable

I Definition of overlapping function ⇒ Notion of clusterability

I Synthetic examples ⇒ General intuition and properties

I Handwritten digit classification ⇒ Partitionable dataset

I Authorship Attribution ⇒ Co-authored plays
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