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Opportunities in distribution systems
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Real power consumption of programmable loads

» Reactive power generated or consumed by photovoltaic (PV) inverters
» Distributed storage: charge/discharge and reactive power support
» Objectives
Thermal loss minimization, voltage regulation, end-user satisfaction
» Challenges
Power flow models are nonconvex
Uncertainty in renewable distributed generation (DG)
Distributed algorithms for scalability
Distribution
Grid
DC DC
Battery
AC | AC
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Prior art and contributions

» Distributed algorithms for reactive power compensation by PV units;
coordination with controllable loads

[Turitsyn et al.’10-"11] [Li et al. “12] [Lam et al. ’12] [Bolognani et al. "13] [Sulc et al. ’14]
[Dall’Anese et al. 14] [Peng-Low "15] [Bazrafshan-Gatsis '16]
» Coupling of storage with renewable energy
No network constraints = no reactive power support or voltage constraints
[Marques-Gatsis '14] [Lakshminarayana et al. "14] [Rahbar et al. "15] [Sun et al. ’15]
» Storage in transmission networks
[Gayme-Topcu '11] [Lamadrid "15]
» This work: Optimal scheduling and coordination of 3 resource types
Controllable loads (real power), PV units (reactive power),
and storage (real and reactive power)
Decentralized solver based on ADMM, closed-form updates
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Simplified DistFlow equations
[Mo,t — V02 — ﬁXed] [Ul,t — V12,t] [Um—l,t — Vn%_l,t] 2,75] [um+1,t — VT?L—I—l,t]U’N,t
Pm—l,t

—
Qm—l,t

Losses

Substation

P1t,41,t Pm—1,t,9m—1,t Pm,ty Qm,t Pm+1,ty qm+1,t PNt dN ¢t
Net consumption

A . ' Pm—l,t:Pm,t+pm,t <m:O,,N—1,t:1,,T)
PPFOXImatIOH.S . Qm—l,t — Qm,t + qm,t
|. Losses negligible
2. Voltage drop very small Umt1,t = Umt = 2(Tm Pt + TmQmt)
[Baran-Wu ’89] [ Upt = V02; Pyv:=Qn:=0 (t=1,...,T) ]
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Distributed Energy Resources
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User consumption model

v

Real and reactive power consumption py, ;; @, ¢

Real power limits [p,,c,,%t,min < pf,cn,t < pvcn,t,max]

v

» Reactive power determined through the power factor
1
C __cC
qm,t — pm,t PF2 —1
m
» Concave utility function models user happiness, e.g., / 1 \
T
c c ( N ( N ( )
e Un(Pr,) = ZKm,th,t P | [—phY || Do
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pm,t,min pm,t,max
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PV injection model
SPV

m,max

» Maximum real and apparent power capacmes pm max

pmt pmmax (m:LaNat:L?T)

» Inverter SiZ|ng to effect reactive power control
SPV

m,max > pm,max

[Turitsyn, Sulc, Backhaus, Chertkov *10-"1 |]

» Real powers {p’ }m ¢ assumed known
Forecasted in advance of horizon {1,..., T}

Intra-hour solar forecasting is rapidly developing
» Reactive power q generated or consumed: decision t/ ﬂ N

e  pv) ( st )
Py, | |=P P,

B, \/(SPV )2 — (pPV))2 c = | (.
m,max m, At At | | T 9m,t

kLoad) \_ DG W, \_ DS )
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Storage model

b

v

Charge or discharge with limits [—pf;,tb,max < pst <D max]

Time slot duration 0; energy stored in the beginning of slot b,

[bm7t+1 — bmat + 5pf7§>t]
Initial condition b, 1 known

Storage capacity limit [0 L B = bm,maX]

Terminal constraint [bm,T—i—l > Qm]

um,t

Storage inverter sizing for reactive power support / 1 \
t
S:rgn ,max > pm,max - 0 (@ )
Reactive power provided by storage unit q;f,f,t Pyt | | =Pyt | | Pt
( st )2 —|_ ( st ) (Sst ) qmat _qTFr)LVtv _qi’f,t
pm,t qm,t M, max \Load) | DG )L DS )
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Coordination of DERs

Cost of power

—User Utility Thermal losses
____________________ procurement
" N o (T N1 |
min | — Z Um(pgn) —l-EZCost(Po,t) —I—Z 72 [(Pm,t)2 + (Qm,t)Z}
m=1 =1 . t=1m=0 0 '

_ c PV st
Pm+17t — Pm,t T (pm—|—1,t — Pm+1.t +pm—|—1,t)
Power flow

Qm+1,t = Qmt — (pfnﬂ,t\/(l/PF?n) —1-— qu,t — qf,fﬂ,t) equations

\ Um+1,t — Um,t — 2(Tum,t + mem,t) -/

Ve

, Vi(l =€) <ty < V(1 + 6)2] Voltage regulation 0 < bm,t < bm,max

\Qm S bm,T—|—1 S bm,max

bmtt1 = bt + 5pf,f7t ] Storage dynamical equation

Storage energy limits

PV
5B e — R < 05 < /(5B e — R | [Bintunin < Bt < Pt

Y

t
(pm,t) + (an, ) (Sin max) _pfri ,max — pm t — pfri ,max
Reactive power limits Real power limits
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Decentralization: Auxiliary variables

m—1 m m+1

1
I

“Estimates”
maintained
at node m

Variables X,

Variables z,,,
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Closed-form ADMM updates

» Xmm-update: Linear equality constrained quadratic program (QP)

» Zp-update: Two cases

For all variables except p

m

st ‘s (jf,f . » single-variable QP with a box constraint

For storage control variables ﬁffb,t, erf,t, QCQP in 2 variables

@1mlzeﬁ§§,t @, \

P ~s P ~s
§(pn€,t)2 + i(qn,f,t)2
- ﬁfri,t(ppi’tb,t T, 1)
— g%,t(ﬂq;f,t + Vm,t)
subject to:

B (@50 £ (8 e

11715

x-variables fixed
for z-update

ADMM
Multipliers

Multiplier x

t st t ) e —
\ - pfn,max < pfn,t < p;":,%max / Multipliers K, K
/

i

=
K

Write the KKT conditions,

and check the 8 combinations of
Lagrange multipliers K, kK, K

being 0 or not

p+2K)D s+ R —E=ppy ;s +1

(
(p+ 2K’)dfrf,t = quff,t TV

K’[(ﬁi’i,t)z + (gfrf,t)2 o (Sfrf,max)z] =0

~st

<_pfrtL,max + pm,t) =0
( st ~St ) — 0

“Pm,max — Pm,t



v

vV VvV Vv

Algorithm merits

Updates decouple per node
z-update also parallelized across t

Updates are in closed form
Communication between neighboring nodes only

User parameters U,,,(Pm) PF,, remain with node m

c c
) pm,t,min? pm,t,max?

m-—1 m m+ 1 m-—1 m m+ 1
Prior to Prior to - -
x-update pm_l’t Tses z-update (T (Pmt.Om ¢)

],/\m,t (’im tuam,t)

— | —
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Numerical tests

Network with N = 25 nodes

Randomized PV profile from NREL data

(April 4, 2006); § = 5 min

Ky 1in time = py, , 1
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Summary

» Coordination of DERs in distribution networks
Real power from programmable loads
Reactive power from PV inverters
Storage charge/discharge and reactive power support
Decentralized algorithm based on ADMM,; closed-form updates

» Future directions
Impact of storage lifetime models on optimal scheduling
Accounting for uncertainty in solar generation

Thank you!

Full citation: N. Gatsis, L.Yalamanchili, M. Bazrafshan, and P. Risbud, “Decentralized
Coordination of Energy Resources in Electricity Distribution Networks,” in Proc. IEEE
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