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Abstract—We describe and evaluate an algorithm for
image reconstruction in 3D x-ray computed tomography.
The proposed algorithm is similar to the class of projected
gradient methods. The gradient descent for reducing the
measurement misfit term is carried out using a stochastic
gradient iteration and the gradient directions are weighted
using weights suggested by parallel coordinate descent. In
addition, to further improve the speed of the algorithm,
at each iteration we minimize the cost function on a small
subspace spanned by the direction of the current projected
gradient and several previous update directions. We apply
the proposed algorithm on simulated and real cone-beam
projections and compare it with Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA).

I. INTRODUCTION

Statistical and iterative reconstruction methods for x-
ray computed tomography (CT) have received renewed
interest in recent years. The majority of iterative recon-
struction algorithms proposed for 3D CT in recent years
are based on the class of projected gradient methods.
Each iteration of these algorithms involves a gradient
step to reduce the measurement misfit term followed by
a proximal operator for the regularization term, which
is usually the total variation. Accelerated versions of
these algorithms, such as FISTA, Nesterov’s method,
and ADMM have been successfully deployed for 3D CT
[1, 2, 3].

In this study, we propose a new algorithm that is
different from the basic gradient projection scheme in
several ways. For reducing the measurement misfit term,
we suggest a parallel coordinate descent update that will
lead to a weighted gradient descent step. After applying
the proximal operator for the TV regularization, this can
be used as the new estimate of the image. However, in
the spirit of methods such as the method of conjugate
gradients, we use this direction along with the directions
of several previous image updates to define a subspace
over which the cost function is approximately minimized
in each iteration. We apply the proposed algorithm on
simulated and real CT data and compare it with FISTA.

II. MATERIALS AND METHODS

We denote the unknown image by x ∈ Rn and the
projection measurements by y ∈ Rm. Our goal is to
recover an estimate of the unknown image by solving
the following unconstrained problem:

x̂ = arg min
x

1

2
||Ax− y||22 + λTV(x) (1)

A common approach to solving such a problem is
an iterative algorithm that applies, in each iteration, a
gradient descent step for the measurement consistency
term followed by a proximity operator for the non-
smooth regularization term. This basic approach can
be extended and accelerated in many ways [4]. Here,
we follow a slightly different approach by applying a
parallel coordinate descent for the measurement consis-
tency term. Assuming that xk is our current estimate, if
we want to minimize this term with respect to its ith
coordinate, the exact solution will be:

xk+1[i] = xk[i] +
ATi (y −Axk)

||Ai||2
(2)

where Ai denotes the ith column of A. While a straight-
forward implementation of this algorithm is possible in
theory, it will be impractical for 3D CT because of the
very large size of the problem and because fast forward
and back-projection algorithms process all measurements
in one projection view at once. Therefore, we suggest the
following parallel coordinate descent iteration:

xk+1 = Ψλ

(
xk +W−1AT (y −Axk)

)
(3)

where W ∈ Rn×n is a diagonal matrix whose diagonal
elements are norms of the columns of A and Ψλ is the
proximal operator of TV, i.e.:

Ψλ(u) = arg min
x

(
1

2
||x− u||22 + λTV(x)

)
(4)

The iteration in (3) is in the form of forward-backward
splitting algorithms. A similar iteration was suggested



in [5] for `1-regularized problems. However, these al-
gorithms are known to have a slow convergence rate.
To improve their speed, several algorithms have been
proposed in recent years. In most of these algorithms
(e.g. [1, 3]), the speedup is achieved by exploiting the
directions of previous updates. In other words, xk+1

is computed not only based on xk, but also xk−1.
In sequential subspace optimization, proposed in [6],
directions of several previous updates are exploited and
superior convergence rates are reported. This idea is
very similar in essence to the method of conjugate
gradients applied to quadratic functions. Following this
idea, at every iteration of the algorithm we minimize the
cost function in (1) over the subspace spanned by the
direction suggested by (3) as well as the directions of K
previous updates. Formally:

xk+1 = xk +

K+1∑
i=1

α̂ki d
k
i

where{
dk1 = xk −Ψλ

(
xk +W−1AT (y −Axk)

)
dki = xk−i+1 − xk−i i = 2 : K + 1

(5)

and the coefficients αis are chosen to minimize the cost
function:

α̂ki = arg min
α

1

2
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αki d
k
i )− y
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+ λTV

(
xk +

K+1∑
i=1

αki d
k
i

)
This minimization is not easy because TV is non-

smooth. The approach followed in this study was to
sequentially minimize the cost function with respect
to individual αis using golden section search. In our
experience, the values of αis did not change drastically
between successive iterations of the algorithm. There-
fore, αis can be initialized to the values found in the
previous iteration and a search performed in a small
neighborhood around these values. This way, a single
sweep through αis, starting with α1, was enough to find
α̂is to good accuracy.

The inner update in (3) (i.e. the update prior to
the application of the proximal operator, which also
appears or in computing dk1 in (5)) is in the form
of a weighted gradient descent. The algorithm can be
made significantly faster by replacing this step with a
stochastic gradient descent algorithm [7, 8]. To explain
this idea, let us note that the measurement misfit term
can be written as:

F (x) =
1

2
||Ax− y||22 =

n∑
i=1

||Aix− yi||22 =

n∑
i=1

fi(x)

where n is total number of projection views, yi is the
measurements in the ith projection, and Ai is the sub-
matrix of A contaning only those rows that correspond
to the ith projection. This form of a cost function is very
conducive to stochastic gradient descent. A full gradient
descent iteration for this cost function will have this
form:

xk+1 = xk + γkA
T (y −Axk) (7)

which is the same as the inner update in (3) save the
multiplication by the diagonal matrix W , whereas a
stochastic gradient descent step will be:

xk+1 = xk + γkA
T
ik

(yik −Axkik) (8)

where ik is a randomly selected index from among the
set {1, ..., n} and γk is the step size.

Therefore, at each iteration of the algorithm, instead of
performing a full gradient step, we perform n stochastic
gradient descents, where N is the number of projection
views. The order of projection views is chosen randomly
in each iteration and each projection view is used ex-
actly once in each iteration. Stochastic gradient descents
usually exhibit fast convergence in the initial iterations
but their convergence rate deteriorates as the algorithm
makes progress [9]. This is because the direction of a
stochastic gradient is equal to the direction of the true
(full) gradient only in expectation and the variance can
be quite high. Therefore, it is common to use diminishing
step sizes. We use a rule of the form γk = γ0/(1+γ0βk),
where γ0 is the initial step size, k is an iteration number,
and β is a decay parameter [9]. We used a value of β =
10 which we found empirically. As for the initial value,
γ0, used different values for different projection views.
Specifically, γ0i is selected to be inversely proportional
to largest eigenvalue of the corresponding sub-matrix Ai,
which is the Lipschitz constant of the gradient of the
measurement misfit term associated with a projection
view (i.e., fi(x)). These eigenvalues can be estimated
using a power method and stored before the start of the
algorithm.

In order to evaluate the proposed algorithm, we ap-
plied it on a set of simulated data and two sets of real
cone-beam projections. The simulated data consisted of
90 projections with uniform angular spacing between 0◦

and 178◦ from a 3D Shepp-Logan phantom. A phantom
of size 256 × 256 × 256 voxels and a flat detector
of 360 × 360 pixels were considered. The incident
photon count was considered to be N0 = 2 × 104.
The real cone-beam sinograms were acquired using a
Gamma Medica eXplore CT 120 micro-CT scanner. The
imaged objects included a phantom, designed in [10] for
comprehensive evaluation of the performance of micro-
CT scanners, and a dead rat. The flat panel detector
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included 3500 × 2272 detector elements, which with
4× 4 binning generated 875× 568 sinograms. The scan
of the phantom consisted of 110 projections at 1.754◦

intervals, whereas the scan of the rat consisted of 122
projections at 1.484◦ intervals. The tube voltage, tube
current, and exposure times were, respectively, 80 kV,
32 mA, and 8 ms for the scan of the phantom, and
50 kV, 63 mA, and 100 ms for the rat scan. The size
of the reconstructed image was 880× 880× 650 voxels,
with isotropic voxels of 0.1 × 0.1 × 0.1 mm3 in size.
We compared the proposed algorithm with Fast Iterative
Shrinkage- Thresholding Algorithm (FISTA) [1]. Every
iteration of the proposed method and FISTA require
one forward-projection and one back-projection, which
account for the main computational load. Therefore, we
use the iteration count as a measure of computational
effort. An important parameter in the proposed algorithm
is the number of previous update directions, K. In all the
experiments reported in this study we used K = 3.

III. RESULTS

For the simulated data from the Shepp-Logan phan-
tom, Figure 1 shows the Root-mean-square of the re-
construction error (RMSE), where reconstruction error is
defined as the difference between the reconstructed and
true images, for the proposed algorithm and FISTA for
up to 45 iterations. Both algorithms were initialized with
a filtered-backprojection reconstruction. The proposed
algorithm has a better start but the two algorithms get
closer with more iterations.

Figure 1. Change in the RMS of the reconstruction error for the
Shepp-Logan phantom reconstructed with the proposed algorithm and
FISTA.

The physical phantom imaged using the micro-CT
scanner contained a module including a slanted edge
that consisted of a plastic-air boundary. This provided
an ideal means of estimating the modulation transfer
function, MTF. The estimated MTF for the images

reconstructed using the proposed algorithm and FISTA
are shown in Figure 2. In Figure 3 we have shown cross
sections of the reconstructed phantom at the location of
a set of resolution coils and one-dimensional profiles
through the coils. We also used a uniform polycar-
bonate plate in the phantom to assess the noise level
in the reconstructed images. The signal-to-noise-ratio
for the images reconstructed using FBP, FISTA, and
the proposed algorithm were 19.6, 22.3, and 22.7 dB,
respectively. Overall, for the construction of the image of
the physical phantom, the proposed algorithm performs
slightly better than FISTA. As expected, both FISTA and
the proposed algorithm outperform FBP.

Figure 2. Estimated modulation transfer function for the images of
the physical phantom reconstructed using different algorithms.

Figure 4 shows two selected regions of the images of
the rat reconstructed with different algorithms. Again,
the proposed algorithm achieves a slightly better recon-
struction than FISTA.

IV. DISCUSSION

The proposed algorithm shows a promising perfor-
mance on simulated and real data. A limitation of the
proposed algorithm is the need to store several previous
update directions and their projections. Each update
direction has the size of the reconstructed image and the
size of its projection is equal to the size of the projection
measurements used in the reconstruction. Considering
the large size of 3D CT images and their projections, the
memory requirements may be problematic. The required
memory grows linearly with the number, K, of previous
update directions used. In [5] up to K = 7 are used,
but in our experience no additional improvements are
achieved beyond K = 3 and the memory requirements
for storing three update directions and their projections
should not be prohibitive for most applications.
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Figure 3. Two-dimensional and one-dimensional profiles of a reso-
lution coil in the physical phantom reconstructed with different algo-
rithms: Top: filtered back-projection, center: FISTA, bottom: proposed
algorithm.

V. ACKNOWLEDGMENTS

Micro-CT imaging was performed in the Centre for
High-Throughput Phenogenomics at the University of
British Columbia, a facility supported by the Canada
Foundation for Innovation, British Columbia Knowledge
Development Foundation, and the UBC Faculty of Den-
tistry.

REFERENCES

[1] A. Beck and M. Teboulle, “A fast iterative
shrinkage-thresholding algorithm for linear inverse
problems,” SIAM J. Img. Sci., vol. 2, no. 1, pp.
183–202, Mar. 2009.

[2] Y. Nesterov, “Gradient methods for minimiz-
ing composite objective function,” Universite
Catholique de Louvain, Tech. Rep. CCIT 559,
2007.

[3] J. Bioucas-Dias and M. A. T. Figueiredo, “A new
twist: Two-step iterative shrinkage/thresholding al-
gorithms for image restoration,” Image Processing,
IEEE Transactions on, vol. 16, no. 12, pp. 2992–
3004, 2007.

[4] P. L. Combettes and J.-C. Pesquet, “Proximal split-
ting methods in signal processing,” in Fixed-point
algorithms for inverse problems in science and
engineering. Springer New York, 2011, pp. 185–
212.

Figure 4. Two-dimensional and one-dimensional profiles of a res-
olution coil in the physical phantom reconstructed with different
algorithms: Top: filtered back-projection, center: proposed algorithm,
bottom: FISTA.

[5] M. Zibulevsky and M. Elad, “L1-l2 optimization
in signal and image processing,” Signal Processing
Magazine, IEEE, vol. 27, no. 3, pp. 76–88, 2010.

[6] M. Elad, B. Matalon, and M. Zibulevsky, “Coordi-
nate and subspace optimization methods for linear
least squares with non-quadratic regularization,”
Applied and Computational Harmonic Analysis,
vol. 23, no. 3, pp. 346 – 367, 2007.

[7] N. Le Roux, M. Schmidt, and F. Bach, “A stochas-
tic gradient method with an exponential conver-
gence rate for finite training sets,” arXiv preprint
arXiv:1202.6258, 2012.

[8] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga:
A fast incremental gradient method with support for
non-strongly convex composite objectives,” in Ad-
vances in Neural Information Processing Systems,

4



2014, pp. 1646–1654.
[9] L. Bottou, “Stochastic gradient descent tricks,” in

Neural Networks: Tricks of the Trade, ser. Lecture
Notes in Computer Science, G. Montavon, G. Orr,
and K.-R. Mller, Eds. Springer Berlin Heidelberg,
2012, vol. 7700, pp. 421–436.

[10] L. Y. Du, J. Umoh, H. N. Nikolov, S. I. Pollmann,
T. Y. Lee, and D. W. Holdsworth, “A quality
assurance phantom for the performance evalua-
tion of volumetric micro-CT systems,” Physics in
Medicine and Biology, vol. 52, no. 23, pp. 7087–
7108, 2007.

5


