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Speaker Recognition

The task of determining a speaker’s identity using information extracted from his/ her voice.
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Speaker Verification System

Training/ Enrollment Phase
o LSy
- Feature Model 3
7 | Extraction | Trainin Lely

= e
Speech

Speaker Database

Vertfication Phase

D
John =

A

Y

ﬁ_ Identity Claim | Similarity
] Score v .
— —» Feature Decision IClalmant/
Extraction | Similarity 5 mpostor
Test Score
SP€€Ch /R Hypothesis test
(Text-dependent, Text-prompted ~
or Text independent) Background
— y Virginia

DSP Research Laboratory Wireless Tech




Outline

* Introduction

* Motivation

* Feature Extraction

* Speaker Verification Framework
* Speaker Verification Results

e Conclusions

. Virginia
DSP Research Laboratory Wireless @ Tech



Motivation

State-of-the-art SV systems provide near perfect performance under clean
condjitions.

Performance deteriorates in the presence of background noise.

Noise-robustness improved by feature/model compensation and signal
enhancement techniques.

Drawbacks:

—Require extensive training

—Computationally expensive

—Make assumptions about the noise characteristics.

Can we improve performance by utilizing only important gones of speech,

and discarding less important ones during verification?
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Relative Importance of Speech Zones

Relative Importance = Amount of speaker-specific information

* Co-articulation: the way a speaker moves from one sound to another is speaker specific.

* Dynamic transition regions are more speaker-specific than steady regions.

* We consider consonant-vowel (CV) and vowel-consonant (VC) transitions as vowels are
easy to identify under noise.
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Source-Filter Model of Speech Production
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Line Spectral Frequencies

Speech 1s a combination of two resonance conditions — vocal tract closed at
the glottis and vocal tract open at the glottis.

Ap(z):1+zlf:1akz—k — A (2)= P(z)+Q(z)

2
Closed glottis: Open glottis:
P(2)=A,(2)+2"A(z7)  Q)=A(2)-2" A ()
(Symmetric) (Anti-symmetric)
O =€, 1<k<p+l O, =€, 1<k<p+l

Eftficient representation
LSF Feature: X =| @p; Wy Wp, Dy - Wpy Dy |

2 2

Good quantization properties
Can be interpolated

Interlacing 1 0<wpy <y <@p, <@gy ... < Wpy <0, <7
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Visualizing LSFs

* Line Spectral Frequencies (LSFs) are spectral features.

* Every formant 1s bracketed by an LSF pair

* If a pair of LSFs are far from each other, the magnitude response will be
relatively flat around the two LSFE.
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Gaussian Mixture Model

* A Gaussian Mixture Model (GMM) A is a linear weighted sum of M
Gaussian components

X € RP*P

Xl/l pmgm |um’2m > P =1
Z ) ”‘Z{ peRP

X ={X €R® (1<t<T| mummm A={p ,pn X} m=12.. M

.
* Maximize GMM Likelihood: p(X|A4)= H p(x |4)

t=1

+ Expectation-Maximization Algorithm:  [P(X[2"?)2 p(X]2")
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Speaker Verification — Enrollment Phase

H, : Speech 1s from the hypothesized speaker — Speaker Model
H, : Speech 1s not from the hypothesized speaker — Background Model

* The Universal Background Model (UBM) 1s a 256 component GMM.

* 'Trained by pooling speech from 462 speakers in the TIMIT corpus.

* Speaker Models - GMMs obtained by Maximum a posteriori (MAP)
adaptation of the UBM means

* Tighter coupling— better performance, faster scoring.
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Speaker Verification — Testing Phase

The speaker verification task is a simple hypothesis test

Given a set of test features X = {Xt eR® :1<t ST}
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Speaker Verification — Performance Evaluation

Threshold
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Miss: Rejecting a target trial
E.. /n,

miss mISS

False Alarm: Accepting an impostor trial
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Experimental Setup

Parameter

Description

Number of speakers (S)

168

Training set of each speaker

All SX| SI sentences from
TIMIT corpus (~3 seconds x 8)

Test set of each speaker

SA sentences from TIMIT
(~3 seconds x 2)

Feature Type LSF
Feature Dimension/Otrder (p) 20
Frame Length (L) 20 msec
Frame Shift (6) 10 msec

Number of GMM Components

256 (UBM adapted GMM)

M)
GMM Covariance Type Nodal and Diagonal
Noise Corpus SPIB Noise Dataset
# Speakers | # Target Trials |# Impostor Trials | # Total Trials
168 X 167 x 2 = 56112 + 336 =
168 168 x 2 = 336
56112 56448
Wireless
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SV System Performance

1) Static features - LSF
2)  Dynamic features - ALSF Af (X) = aALSF (X) + (1_ a)AALSF (X)
3) Score Level Fusion - LSF + ALSF

Performance of Score-level Fusion based SV system
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Discriminative Power of Speech Zones

A portion of a test utterance with detected VOPs/VEPs

zy

D

21

Speech

1 % 3
I I l I I I Detected
05l VOP
= Detected
= VEP
E True
0.5 F VOP
& Gl *0O
| | | | | | | | | True
-1 VEP
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (sec)
Corresponding LSF Features
JE , PO T O o199 o & — & T & & & OT—© —
w/\/&vw\/\ﬂwﬁ. Awmmﬁﬁﬁh‘\ m/"\/\_,\r./—-/‘
21= %% V™ M~ Vol \Nv*/\/*/:
=
v
Z Mvﬁ /\/\ o ﬁ ;ﬂ/\\-—«—/ /o Vs
1 mhp—/\%\“wv — Mﬁ\cv&—’—f\/\_\ﬁ/ ’J\N\_-_. /f’\,:
NOUZARN\ NV S\ e S— N VA% N AN R = >
o | —‘—‘T""'—"\/JIA S [ I " s T |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 22
Frame center (sec)
Speech Frame Classification
! |
—  Vowel
05 || — Transition
’ Non-
Vowel
|
0
0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 22

Frame center (sec)

DSP Research Laboratory

Wireless @Vlrg%gh



22

Discriminative Power of Speech Zones

Xtr is the set of features from transition frames mmmp O , = Z log p(x| 4,)
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Performance Improvement
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Performance Improvement
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Conclusions

* An automatic, text-independent speaker verification (SV) system was developed using
Line Spectral Frequency (LSF) features.

* The performance of the SV system was evaluated under noise.

* Score-level fusion was used to combine complementary information from static and
dynamic LSF features.

* Speaker-discriminative power of vowel, transition and non-vowel regions were
investigated.

* Transition regions are the most speaker-discriminative under high SNR conditions
* High-energy vowel regions are most speaker-discriminative under low SNR conditions.

* Under noisy conditions, the performance of the score-level fusion based SV systems can
be improved substantially by scoring exclusively on a combination of transition and
vowel frames.

e Future work
—Investigate the effect of training speaker models using transition zones.

—Improve the algorithm used to localize transition zones.
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