Using LSF Features for Speaker Verification in Noise

Pujita Raman and Dr. A. A. (Louis) Beex DSP Research Laboratory Wireless @ Virginia Tech

IEEE Global Conference on Signal and Information Processing Tuesday, December 15th, 2015

Orlando, Florida

• Introduction

- Motivation
- Feature Extraction
- Speaker Verification Framework
- Speaker Verification Results
- Conclusions

The task of determining a speaker's identity using information extracted from his/her voice.

DSP Research Laboratory

Speaker Verification System

- Introduction
- Motivation
- Feature Extraction
- Speaker Verification Framework
- Speaker Verification Results
- Conclusions

Motivation

- State-of-the-art SV systems provide near perfect performance under clean conditions.
- Performance deteriorates in the presence of background noise.
- Noise-robustness improved by feature/model compensation and signal enhancement techniques.
- Drawbacks:
 - -Require extensive training
 - -Computationally expensive
 - -Make assumptions about the noise characteristics.

Can we improve performance by utilizing only <u>important zones</u> of speech, and discarding less important zones during verification?

Relative Importance of Speech Zones

Relative Importance = Amount of speaker-specific information

- Co-articulation: the way a speaker moves from one sound to another is speaker specific.
- Dynamic transition regions are more speaker-specific than steady regions.
- We consider consonant-vowel (CV) and vowel-consonant (VC) transitions as vowels are easy to identify under noise.

Wireless

- Introduction
- Motivation
- Feature Extraction
- Speaker Verification Framework
- Speaker Verification Results
- Conclusions

Source-Filter Model of Speech Production

Linear Prediction Coefficients

DSP Research Laboratory

Speech is a combination of two resonance conditions – vocal tract closed at the glottis and vocal tract open at the glottis.

$$A_{p}(z) = 1 + \sum_{k=1}^{p} a_{k} z^{-k} \longrightarrow A_{p}(z) = \frac{P(z) + Q(z)}{2}$$

Closed glottis:

$$P(z) = A_{p}(z) + z^{-(p+1)}A_{p}(z^{-1})$$
(Symmetric)

$$\theta_{p_{k}} = e^{j\omega_{p_{k}}}, \quad 1 \le k \le p+1$$

$$Q(z) = A_{p}(z) - z^{-(p+1)}A_{p}(z^{-1})$$
(Anti-symmetric)

$$\theta_{Q_{k}} = e^{j\omega_{Q_{k}}}, \quad 1 \le k \le p+1$$

$$ISF \text{ Feature:} \quad \mathbf{X} = \begin{bmatrix} \omega_{p_{1}} \omega_{Q_{1}} \omega_{p_{2}} \omega_{Q_{2}} \dots \omega_{p_{p}} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = e^{j\omega_{Q_{k}}}, \quad 1 \le k \le p+1$$

$$Good \text{ quantization properties}$$

$$Good \text{ quantization properties}$$

$$Good \text{ quantization properties}$$

Interlacing: $0 < \omega_{P1} < \omega_{Q1} < \omega_{P2} < \omega_{Q2} \dots < \omega_{\frac{Pp}{2}} < \omega_{\frac{Qp}{2}} < \pi$

Visualizing LSFs

- Line Spectral Frequencies (LSFs) are spectral features.
- Every formant is bracketed by an LSF pair
- If a pair of LSFs are far from each other, the magnitude response will be relatively flat around the two LSF.

Image source: McLoughlin, Ian Vince. "Line spectral pairs." Signal processing 88.3 (2008): 448-467, http://www.lintech.org/webpapers/lsp_paper.pdf

DSP Research Laboratory

- Introduction
- Motivation
- Feature Extraction
- Speaker Verification Framework
- Speaker Verification Results
- Conclusions

 A Gaussian Mixture Model (GMM) λ is a linear weighted sum of M Gaussian components

$$p(\mathbf{x}|\lambda) = \sum_{m=1}^{M} p_m g_m(\mathbf{x} | \mathbf{\mu}_m, \mathbf{\Sigma}_m) \qquad \sum_{m=1}^{M} p_m = 1 \qquad \mathbf{\Sigma}_m \in \mathbb{R}^{D \times D} \\ \mathbf{\mu}_m \in \mathbb{R}^D$$

$$X = \left\{ \mathbf{x}_t \in \mathbb{R}^D : 1 \le t \le T \right\} \longrightarrow \lambda = \left\{ p_m, \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m \right\}, \quad m = 1, 2, \dots, M$$

- Maximize GMM Likelihood: $p(X | \lambda) = \prod_{t=1}^{T} p(\mathbf{x}_t | \lambda)$
- Expectation-Maximization Algorithm:

 $p\left(X \mid \lambda^{(i+1)}
ight) \ge p\left(X \mid \lambda^{(i)}
ight)$

Speaker Verification – Enrollment Phase

H₀: Speech is from the hypothesized speaker – Speaker Model
H₁: Speech is not from the hypothesized speaker – Background Model

- The Universal Background Model (UBM) is a 256 component GMM.
- Trained by pooling speech from 462 speakers in the TIMIT corpus.
- Speaker Models GMMs obtained by Maximum a posteriori (MAP) adaptation of the UBM means
- Tighter coupling-better performance, faster scoring.

Image Source: Reynolds, Douglas A., Thomas F. Quatieri, and Robert B. Dunn. "Speaker verification using adapted Gaussian mixture models." *Digital signal processing* 10.1 (2000): 19-41. DSP Research Laboratory

Wireles

Speaker Verification – Testing Phase

Miss: Rejecting a target trial $E_{miss} = n_{miss} / n_t$ False Alarm: Accepting an impostor trial $E_{fa} = n_{fa} / n_i$

Equal Error Rate (%): Point at which probability of miss equals probability of false alarm.

- Introduction
- Motivation
- Feature Extraction
- Speaker Verification Framework
- Speaker Verification Results
- Conclusions

Experimental Setup

Parameter	Description	
Number of speakers (S)	168	
	All SX, SI sentences from	
Training set of each speaker	TIMIT corpus (~3 seconds x 8)	
	SA sentences from TIMIT	
lest set of each speaker	(~3 seconds x 2)	
Feature Type	LSF	
Feature Dimension/Order (p)	20	
Frame Length (L)	20 msec	
Frame Shift (δ)	10 msec	
Number of GMM Components	256 (UBM adapted GMM)	
(M)		
GMM Covariance Type	Nodal and Diagonal	
Noise Corpus	SPIB Noise Dataset	

# Speakers	# Target Trials	# Impostor Trials	# Total Trials
168	168 x 2 = 336	168 x 167 x 2 =	56112 + 336 =
		56112	56448

ginia Tech

Wireless @

SV System Performance

Score Level Fusion - $LSF + \Delta LSF$

1) Static features - LSF

3)

2) Dynamic features - Δ LSF

$$\Lambda_{f}(X) = \alpha \Lambda_{LSF}(X) + (1 - \alpha) \Lambda_{\Delta LSF}(X)$$

- Performance of Score-level Fusion based SV system White Noise **Babble** Noise 60 30 LSF LSF ΔLSF ΔLSF 40 20r - LSF+∆LSF - LSF+ΔLSF 20 10 Equal Error Rate (%) 0 0 12 18 24 30 12 18 24 30 0 6 0 6 Factory Noise Cockpit Noise 60 60 - LSF LSF ΔLSF ΔLSF 40 40 - LSF+ΔLSF LSF+ALSF 20 20 0 0 12 18 12 18 24 24 6 30 6 30 0 0
- Baseline EER=0.86%
- Score-level fusion improves performance under noise

SNR (dB)

Discriminative Power of Speech Zones

Discriminative Power of Speech Zones

 X_{tr} is the set of features from transition frames $\longrightarrow \Phi_{s,X_{tr}} = \sum_{\mathbf{x} \in X_{tr}} \log p(\mathbf{x} \mid \lambda_s)$

- High SNR transitions are most speaker discriminative
- Low SNR vowels are most speaker discriminative
- Frame-level selection- not much benefit in high SNR
- Scoring on vowel + transition frames improves performance in low SNR.

Performance Improvement

Performance Improvement

- Introduction
- Motivation
- Feature Extraction
- Speaker Verification Framework
- Speaker Verification Results
- Conclusions

Conclusions

- An automatic, text-independent speaker verification (SV) system was developed using Line Spectral Frequency (LSF) features.
- The performance of the SV system was evaluated under noise.
- Score-level fusion was used to combine complementary information from static and dynamic LSF features.
- Speaker-discriminative power of vowel, transition and non-vowel regions were investigated.
- Transition regions are the most speaker-discriminative under high SNR conditions
- High-energy vowel regions are most speaker-discriminative under low SNR conditions.
- Under noisy conditions, the performance of the score-level fusion based SV systems can be improved substantially by scoring exclusively on a combination of transition and vowel frames.
- Future work

-Investigate the effect of training speaker models using transition zones.

-Improve the algorithm used to localize transition zones.