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Speaker Recognition

3

Speaker Recognition

Speaker Identification Speaker Verification
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The task of  determining a speaker’s identity using information extracted from his/her voice. 
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Speaker Verification System
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Motivation

• State-of-the-art SV systems provide near perfect performance under clean 

conditions.

• Performance deteriorates in the presence of background noise.

• Noise-robustness improved by feature/model compensation and signal 

enhancement techniques.

• Drawbacks:  

–Require extensive training 

–Computationally expensive

–Make assumptions about the noise characteristics.

Can we improve performance by utilizing only important zones of speech, 

and discarding less important zones during verification?
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Relative Importance of Speech Zones
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Relative Importance = Amount of  speaker-specific information 

• Co-articulation: the way a speaker moves from one sound to another is speaker specific.

• Dynamic transition regions are more speaker-specific than steady regions.

• We consider consonant-vowel (CV) and vowel-consonant (VC) transitions as vowels are

easy to identify under noise.
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Source-Filter Model of Speech Production
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Image sources: [1] http://jcarreras.homestead.com/rrphonetics1.html [2] http://www.splab.net/APD/G500/index-e.html
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Feature Extraction
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Speech is a combination of  two resonance conditions – vocal tract closed at 

the glottis and vocal tract open at the glottis.
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Visualizing LSFs
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• Line Spectral Frequencies (LSFs) are spectral features.

• Every formant is bracketed by an LSF pair

• If  a pair of  LSFs are far from each other, the magnitude response will be 

relatively flat around the two LSF.

Image source: McLoughlin, Ian Vince. "Line spectral pairs." Signal processing 88.3 (2008): 448-467, http://www.lintech.org/webpapers/lsp_paper.pdf
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Gaussian Mixture Model

• A Gaussian Mixture Model (GMM) λ is a linear weighted sum of M

Gaussian components
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• Expectation-Maximization Algorithm:
     1

| |
i i

p X p X 






DSP Research LaboratoryDSP Research Laboratory

Speaker Verification – Enrollment Phase
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H0 : Speech is from the hypothesized speaker – Speaker Model          

H1 : Speech is not from the hypothesized speaker – Background Model

• The Universal Background Model (UBM) is a 256 component GMM.

• Trained by pooling speech from 462 speakers in the TIMIT corpus.

• Speaker Models - GMMs obtained by Maximum a posteriori (MAP) 

adaptation of  the UBM means

• Tighter coupling– better performance, faster scoring.

Image Source: Reynolds, Douglas A., Thomas F. Quatieri, and Robert B. Dunn. "Speaker verification using adapted Gaussian mixture models." Digital signal processing 10.1 (2000): 19-41.
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Speaker Verification – Testing Phase
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The speaker verification task is a simple hypothesis test

H0 : X is from speaker S H1 : X is not from speaker S
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Speaker Verification – Performance Evaluation
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Miss: Rejecting a target trial

False Alarm: Accepting an impostor trial 
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/fa fa iE n n

Equal Error Rate (%): Point at which 

probability of  miss equals probability of  

false alarm.

Image source: http://loquens.revistas.csic.es/index.php/loquens/article/viewArticle/9/20
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Experimental Setup
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# Speakers # Target Trials # Impostor Trials # Total Trials

168 168 x 2 = 336
168 x 167 x 2 = 

56112

56112 + 336 = 

56448

Parameter Description

Number of  speakers (S) 168

Training set of  each speaker
All SX, SI sentences from 

TIMIT corpus (~3 seconds x 8)

Test set of  each speaker
SA sentences from TIMIT

(~3 seconds x 2)

Feature Type LSF

Feature Dimension/Order (p) 20

Frame Length  (L) 20 msec

Frame Shift  (δ) 10 msec

Number of  GMM Components 

(M)
256 (UBM adapted GMM)

GMM Covariance Type Nodal and Diagonal

Noise Corpus SPIB Noise Dataset
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SV System Performance

• Baseline 

EER=0.86%

• Score-level 

fusion improves 

performance 

under noise

( ) ( ) (1 ) ( )f LSF LSFX X X       
1) Static features - LSF         

2) Dynamic features - ΔLSF

3) Score Level Fusion - LSF + ΔLSF
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Discriminative Power of Speech Zones
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Discriminative Power of Speech Zones
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• High SNR – transitions are 

most speaker discriminative

• Low SNR – vowels are 

most speaker discriminative

• Frame-level selection- not 

much benefit in high SNR

• Scoring on vowel + 

transition frames improves 

performance in low SNR.
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Performance Improvement
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Performance Improvement
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Conclusions

• An automatic, text-independent speaker verification (SV) system was developed using 

Line Spectral Frequency (LSF) features. 

• The performance of the SV system was evaluated under noise.

• Score-level fusion was used to combine complementary information from static and 

dynamic LSF features.

• Speaker-discriminative power of vowel, transition and non-vowel regions were 

investigated.

• Transition regions are the most speaker-discriminative under high SNR conditions

• High-energy vowel regions are most speaker-discriminative under low SNR conditions.

• Under noisy conditions, the performance of the score-level fusion based SV systems can

be improved substantially by scoring exclusively on a combination of transition and

vowel frames.

• Future work

–Investigate the effect of training speaker models using transition zones.

–Improve the algorithm used to localize transition zones.
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