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Introduction

I Spot detection is involved in many image processing appli-
cations.

I Selecting the right scale is required to correctly detect spots
of interest and counteract noise and spurious elements.

Elements of interest can exhibit different sizes or
scales, thus an automated selection of meaningful

scales is needed with the associated multiscale
segmentation paradigm.

Scale-space representation of an image

Let f be an image containing spots of various sizes, corrupted by
Gaussian noise.
I We predefine a set of scales S = {s0rn, n ∈ [0, ν]}.
I With a Laplacian of Gaussian (LoG) transform, we build a 3-

dimensional map Hf where each slice corresponds to the LoG fil-
tered image for a given scale s ∈ S.

I The response of a bright spot of radius ς located at point p, to
the multiscale LoG transform should be minimum at scale s ∈ S,
where s is the closest value to ς2.

I A local minimum in Hf is called a blob.

A contrario selection of multiple scales

Let us take as H0 hypothesis, the situation where no spots are
present, i.e., only uncorrelated Gaussian noise. Let Ω be the
image domain.
I The probability of a pixel to be a blob at scale s is binomial

of mean νs.
I If Ns is the random variable representing the number of

spots at scale s in the random image, Ns is Poisson-
distributed of mean λs = νs|Ω|.

I We generate G = {gi, 1 ≤ i ≤ M}, a set of M standard
normal noise images, and ns(gi) is the computed number
of blobs in gi at scale s.

I We estimate λs as λ̂s = 1
M

∑M
i=1 ns(gi).

I We count the number ns(f ) of blobs in Hf at every scale
s ∈ S.

I We evaluate the probability that ns(f ) blobs may occur under
”no-spots” H0 hypothesis, referred to as the probability of false
alarm PFA(s, f ):

PFA(s, f ) = P(Ns ≥ ns(f )) ' 1− Φλ̂s
(ns(f )) (1)

where Φλ̂s
is the cumulative density function (CDF) of the Pois-

son distribution of mean λ̂s. Meaningful scales should corre-
spond to very low PFA values, it cannot happen ”by chance”.

I Thus, the subset of ε-meaningful scales S? ⊂ S is given by:
S? = {s ∈ S|PFA(s, f ) < ε}. (2)

Spot detection at a given scale

A spot detection binary map ∆s is computed at each scale s by thresh-
olding the lowest values of LoG map Hf (·, s), s ∈ S? (for bright
spots).
I For every point p ∈ Ω, we estimate the local mean µs(p) and

variance σ2
s(p) over a Gaussian window Ws(p) in Hf (·, s).

I The likelihood Ls of belonging to the background of the LoG map
in the vicinity of p at scale s ∈ S? is then defined by:

L(p) = ϕ((Hf (p, s)− µs(p))/σs(p)), (3)

where ϕ denotes the density function of the standard normal dis-
tribution.

I Given a p-valueα, the local threshold value τs is then automatically
inferred as τs(p) = σs(p)ϕ−1(α) + µs(p).

I A point p is detected as belonging to a (bright) spot if
Hf (p, s) < τs(p).

Multiscale spot segmentation

To combine results of spot detection at different scales we
adopt a coarse-to-fine nested approach. The set of meaningful
scales, S? = {sl, l = 1, η} is ranked in decreasing order.
I At each scale sl ∈ S?, we compute the filtered image
ψ(p, sl):

ψ(p, sl) = Hf (p, sl)∆sl−1(p) (4)

where ∆sl−1(p) is the spot detection binary map obtained
at scale sl−1.

I For l = 1, corresponding to the coarsest scale or level, we
take ∆s0(p) = 1, ∀p ∈ Ω.

I The spot detection binary map at a given scale operates
as a mask for spot segmentation at the subsequent finer
scale.

I The final spot segmentation map is given by ∆sη.

Experimental results

We compare our multiscale method to other multiscale methods: MSSEF [2], MS-VST [1], and
the variant AS-MSSEF, a combination of our method and the coarse-to-fine framework of [2].
Parameter values for all experiments: s0 = 1, r = 1.2 and ε = 0.1.

I Simulated data

We generated two sets of 20 simulated
images each. 150 Gaussian spots, of
three equally distributed sizes ς (resp.
{
√

2.6, 2,
√

6}, and {
√

3,
√

5,
√

7}
for the two sets), were randomly sampled
in each simulated image over a uniform
zero-valued background and added Gaus-
sian noise.

Our method AS-MSSEF MSSEF MS-VST
F-m. Jacc. F-m. Jacc. F-m. Jacc. F-m. Jacc.

Mean 0.982 0.724 0.978 0.664 0.937 0.645 0.961 0.357
Std 0.008 0.052 0.009 0.068 0.037 0.048 0.015 0.019
Min 0.966 0.641 0.955 0.565 0.866 0.589 0.926 0.331
Max 0.995 0.790 0.995 0.745 0.989 0.708 0.989 0.386

Table: Statistics over the 40 simulated images of the
two experiments, on the F-measures and Jaccard index,
for the four methods.

I Real data

(a) Input image (b) Our method (c) Variant AS-MSSEF (d) MSSEF [2] (e) MS-VST [1]

(a) Input image (b) Our method (c) Variant AS-MSSEF (d) MSSEF [2] (e) MS-VST [1]

Figure 1: Spots segmented (in black) by the four methods on a real light microscopy cell image (top row, by
courtesy of Institut Curie), and on a real astronomy image (bottom row, from NASA webpage).

(a) Input image (b) Our method (c) Input image (d) Our method

Figure 2: Spots segmented (in black) by our method on a SAR satellite image including ships (a) and an aerial
color image depicting a sheep herd in a meadow (c).
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