Introduction

- Spot detection is involved in many image processing a cations.
- Selecting the right scale is required to correctly detect s of interest and counteract noise and spurious elements.

Elements of interest can exhibit different sizes scales, thus an automated selection of meaningf scales is needed with the associated multiscale segmentation paradigm.

A contrario selection of multiple scales

Let us take as H_0 hypothesis, the situation where no spots present, i.e., only uncorrelated Gaussian noise. Let Ω be image domain.

- The probability of a pixel to be a blob at scale s is bino of mean ν_s .
- \blacktriangleright If N_s is the random variable representing the number spots at scale s in the random image, N_s is Pois distributed of mean $\lambda_{\rm s} = \nu_{\rm s} |\Omega|$.
- ▶ We generate $\mathcal{G} = \{g_i, 1 \leq i \leq M\}$, a set of M standard normal noise images, and $n_s(g_i)$ is the computed number of blobs in g_i at scale **s**.
- We estimate λ_s as $\hat{\lambda}_s = \frac{1}{M} \sum_{i=1}^{M} n_s(g_i)$.

Spot detection at a given scale

A spot detection binary map Δ_s is computed at each scale s by olding the lowest values of LoG map $H_f(\cdot, \mathbf{s})$, $s \in \mathcal{S}^{\star}$ (for spots).

- For every point $p \in \Omega$, we estimate the local mean μ_s variance $\sigma_s^2(p)$ over a Gaussian window $W_s(p)$ in $H_f(\cdot, \mathbf{s})$
- \blacktriangleright The likelihood \mathcal{L}_{s} of belonging to the background of the Lo in the vicinity of p at scale $s \in S^*$ is then defined by: $\mathcal{L}(p) = \varphi((H_f(p, \mathbf{s}) - \mu_s(p)) / \sigma_s(p)),$

where φ denotes the density function of the standard norm tribution.

- \triangleright Given a p-value α , the local threshold value τ_s is then autom inferred as $\tau_s(p) = \sigma_s(p)\varphi^{-1}(\alpha) + \mu_s(p)$.
- A point p is detected as belonging to a (bright) spot if $H_f(p,s) < \tau_s(p)$

MULTI-SCALE SPOT SEGMENTATION WITH SELECTION OF IMAGE SCALES

Bertha Mayela Toledo Acosta*, Antoine Basset[†], Patrick Bouthemy*, Charles Kervrann* [†]CNES, Toulouse, France *Inria Centre Rennes - Bretagne Atlantique, France

	Scale-space representation of an image
appli-	Let f be an image containing spots of various sizes, corru Gaussian noise.
spots 5. or ful e	 We predefine a set of scales S = {s₀rⁿ, n ∈ [0, ν]}. With a Laplacian of Gaussian (LoG) transform, we budimensional map H_f where each slice corresponds to the tered image for a given scale s ∈ S. The response of a bright spot of radius ς located at point the multiscale LoG transform should be minimum at scale where s is the closest value to ς². A local minimum in H_f is called a blob.
s are e the	 ▶ We count the number n_s(f) of blobs in H_f at every s ∈ S. ▶ We evaluate the probability that n_s(f) blobs may occur
omial	"no-spots" H_0 hypothesis, referred to as the probability of alarm $PFA(s, f)$:
er of	$\operatorname{PFA}(s,f) = \mathbb{P}(N_s \geq n_s(f)) \simeq 1 - \Phi_{\hat{\lambda}_s}(n_s(f))$
sson-	where $\Phi_{\hat{\lambda}_s}$ is the cumulative density function (CDF) of the

son distribution of mean $\hat{\lambda}_{s}$. Meaningful scales should correspond to very low \mathbf{PFA} values, it cannot happen "by chance". \blacktriangleright Thus, the subset of ϵ -meaningful scales $\mathcal{S}^* \subset \mathcal{S}$ is given by:

Thus, the subset of c meaningful seales C C is given
$\mathcal{S}^{\star} = \{s \in \mathcal{S} \text{PFA}(s, f) < \epsilon\}.$

	Multiscale spot segmentation
y thresh- or bright	To combine results of spot detection at different sca adopt a coarse-to-fine nested approach. The set of mean scales, $\mathcal{S}^{\star} = \{s_l, l = 1, \eta\}$ is ranked in decreasing o
(<i>p</i>) and	► At each scale $\mathbf{s}_I \in \mathcal{S}^{\star}$, we compute the filtered
s).	$\psi(p, s_l)$:
.oG map	$\psi(p,s_l) = H_f(p,s_l)\Delta_{s_{l-1}}(p)$
	where $\Delta_{s_{l-1}}(p)$ is the spot detection binary map ob
(3)	at scale s_{I-1} .
mal dis-	For $I = 1$, corresponding to the coarsest scale or levels
	take $oldsymbol{\Delta}_{s_0}(p) = 1, orall p \in oldsymbol{\Omega}$.
natically	The spot detection binary map at a given scale op as a mask for spot segmentation at the subsequen scale.
	► The final spot segmentation map is given by $\Delta_{s_{\eta}}$.

corrupted by

we build a 3to the LoG fil-

at point *p*, to scale $\mathbf{s} \in \mathcal{S}$,

every scale

occur under oility of false

(1)of the Pois-

> ales we aningful order. image '

(4)obtained

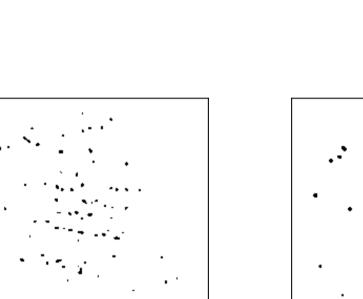
evel, we

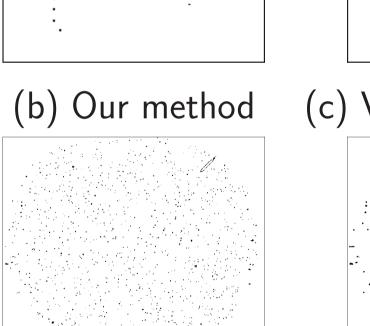
perates ent finer

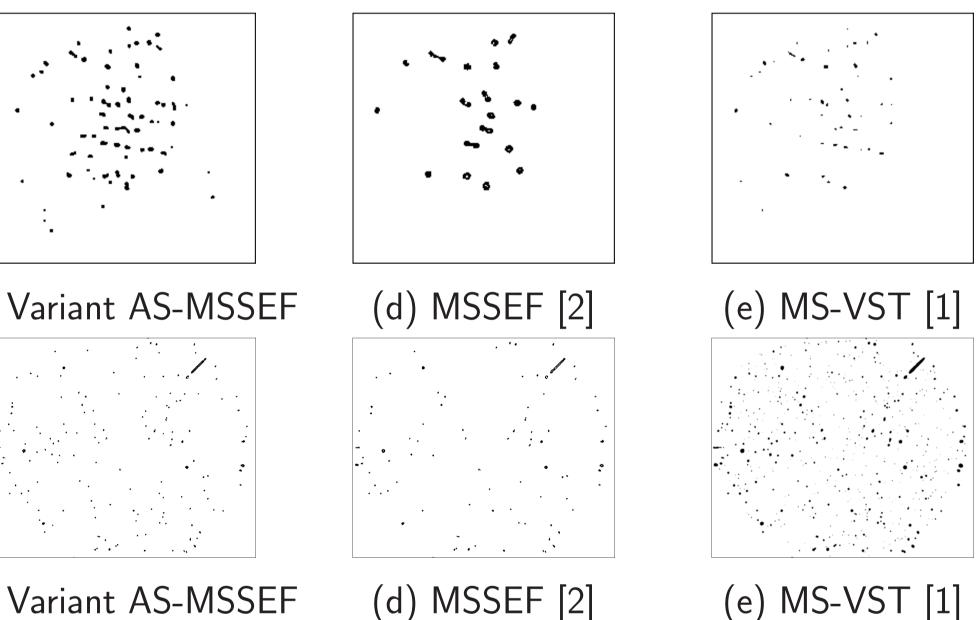
Experimental results

We compare our multiscale method to other multiscale methods: MSSEF [2], MS-VST [1], and the variant AS-MSSEF, a combination of our method and the coarse-to-fine framework of [2]. Parameter values for all experiments: $s_0 = 1$, r = 1.2 and $\epsilon = 0.1$.

Simulated data


► Real data


(a) Input image


(a) Input image

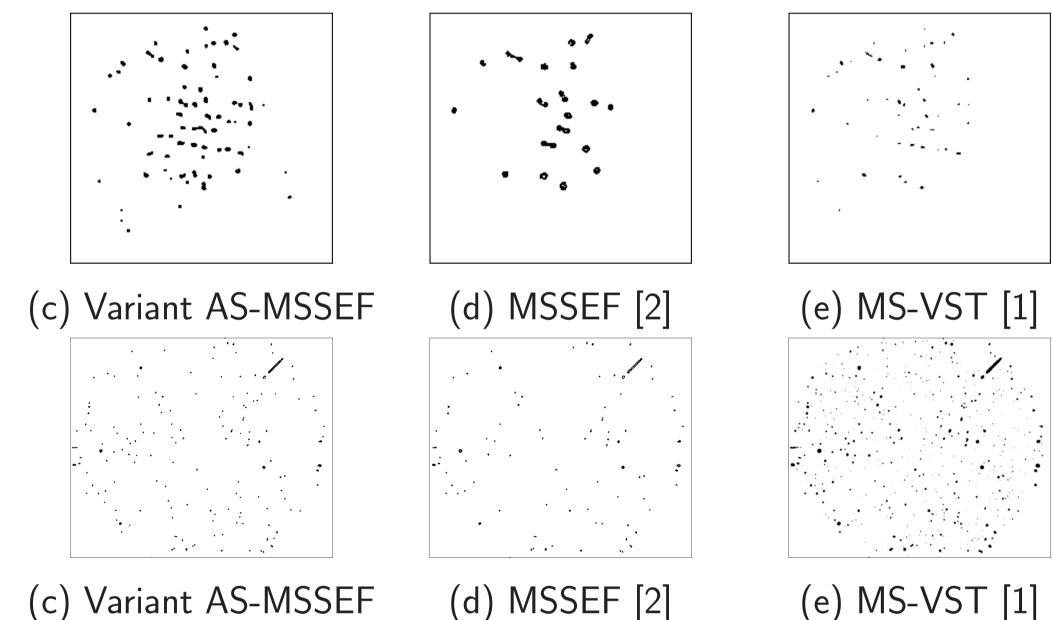
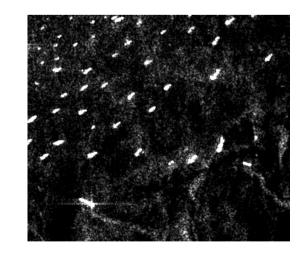

We generated two sets of 20 simulated images each. 150 Gaussian spots, of three equally distributed sizes ς (resp. $\{\sqrt{2.6}, 2, \sqrt{6}\}, \text{ and } \{\sqrt{3}, \sqrt{5}, \sqrt{7}\}$ for the two sets), were randomly sampled in each simulated image over a uniform zero-valued background and added Gaussian noise.

Table: Statistics over the 40 simulated images of the two experiments, on the F-measures and Jaccard index, for the four methods.



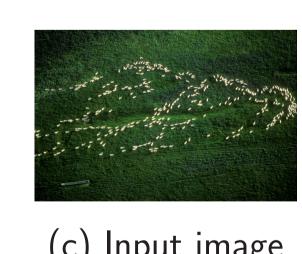

(b) Our method

Figure 1: Spots segmented (in black) by the four methods on a real light microscopy cell image (top row, by courtesy of Institut Curie), and on a real astronomy image (bottom row, from NASA webpage).

(a) Input image

(b) Our method

Figure 2: Spots segmented (in black) by our method on a SAR satellite image including ships (a) and an aerial color image depicting a sheep herd in a meadow (c).

References

- B. Zhang, et al. Multiscale variance-stabilizing transform for mixed Poisson-Gaussian processes and its applications in bioimaging. ICIP'2007.
- A. Jaiswal, et al. Tracking virus particles in fluorescence microscopy images using multi-scale detection and multi-frame association. IEEE T-IP, 2015.

	Our m	nethod	AS-MSSEF		MSSEF		MS-VST	
	F-m.	Jacc.	F-m.	Jacc.	F-m.	Jacc.	F-m.	Jacc.
<i>l</i> ean	0.982	0.724	0.978	0.664	0.937	0.645	0.961	0.357
d	0.008	0.052	0.009	0.068	0.037	0.048	0.015	0.019
/lin	0.966	0.641	0.955	0.565	0.866	0.589	0.926	0.331
Лах	0.995	0.790	0.995	0.745	0.989	0.708	0.989	0.386

(d) Our method (c) Input image