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Numbers of documents
on co-author network

Traffic queue length
on road network

Temperatures
on sensor network

Vertices

Edges

Positive signals

Negative signals
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Graph: Weight Matrix Signal: Vector

Associate each vertex

with a scalar value

to form a graph signal
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Spectral domain

Representation
(𝝀,  𝐟)

𝐋 = 𝐔𝚲𝐔TGraph Laplacian 𝝀 = diag(𝚲)

𝐟Signal  𝐟 = 𝐔T𝐟

Graph spectrum

Signal Spectrum

(𝒢, 𝐟)
Vertex domain

Representation
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图上信号处理Classical signal processing Signal processing on graphs

DC

signal

Low-

frequency 
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Given: Original graph

signal (𝒢 in, 𝐟in)
Find: Coarsened graph signal

(𝒢, 𝐟) with 𝑛 vertices

λ 

ˆ ( )f 
ˆ ( )f 

λ 

Vertex domain

representation

Spectral domain

representation
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Given: Original graph

signal (𝒢 in, 𝐟in)
Find: Coarsened graph signal

(𝒢, 𝐟) with 𝑛 vertices

λ 

ˆ ( )f 
ˆ ( )f 

λ 

Vertex domain

representation

Spectral domain

representation
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𝐹(𝜆) =
 

𝑖=1

𝑁  𝑓𝑖
2 ⋅ 1𝜆𝑖≤𝜆

 
𝑖=1

𝑁  𝑓𝑖
2

where 1𝜆𝑖≤𝜆 =  
1, 𝜆𝑖 ≤ 𝜆;
0, 𝜆𝑖 > 𝜆.

D[(𝒢1, 𝐟1), (𝒢2, 𝐟2)] =  
0

+∞

| 𝐹1(𝜆) − 𝐹2(𝜆)|d𝜆
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 SECDF

 Spectral Diversity

where𝐹(𝜆) =
 

𝑖=1

𝑁  𝑓𝑖
2 ⋅ 1𝜆𝑖≤𝜆

 
𝑖=1

𝑁  𝑓𝑖
2

1𝜆𝑖≤𝜆 =  
1, 𝜆𝑖 ≤ 𝜆;
0, 𝜆𝑖 > 𝜆.

D[(𝒢1, 𝐟1), (𝒢2, 𝐟2)] =  
0

+∞

| 𝐹1(𝜆) − 𝐹2(𝜆)|d𝜆

SECDF: 𝐹1 𝜆 , 𝐹2 𝜆

Spectral diversity:

Area of shaded region
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Coarsened

graph signal

Original

graph signal

Expected

vertex count
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Original graph

signal

Coarsened

graph signal

Vertex domain

representation

Spectral domain

Representation

① Obtain the spectrum of 

the new graph with 

greedy method

② Get the spectrum of the 

coarsened signal with 

spectral bin method

③ Construct the coarsened 

graph with ADMM

④ Acquire the coarsened 

signal with inverse 

Fournier transform on 

graphs

ˆ ( )f 

ˆ ( )f 

λ 

λ 

λ 

λ 

Step1

Step2

Step3.1

Step3.2

Step4
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Original

graph signal

Vertex domain

representation

Spectral domain

Representation

① Obtain the spectrum of 

the new graph with 

greedy method

ˆ ( )f 

ˆ ( )f 

λ 

λ 

λ 

λ 

Step1

？
？

Coarsened

graph signal
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Original

graph signal

Vertex domain

representation

Spectral domain

Representation

① Obtain the spectrum of 

the new graph with 

greedy method

ˆ ( )f 

ˆ ( )f 

λ 

λ 

λ 

λ 

Step1

？
？

Coarsened

graph signal

•
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Original graph

signal

Vertex domain

representation

Spectral domain

Representation

① Obtain the spectrum of 

the new graph with 

greedy method

② Get the spectrum of the 

coarsened signal with 

spectral bin method*

ˆ ( )f 

ˆ ( )f 

λ 

λ 

λ 

λ 

Step1

Step2

？

*Method proposed in P. Liu, X. Wang, and Y. Gu, Graph Signal Coarsening: Dimensionality Reduction

in Irregular Domain, IEEE Global Conference on Signal and Information Processing (GlobalSIP),

966-970, Dec. 3-5, 2014, Atlanta, Georgia, USA.

Coarsened

graph signal
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Original graph

signal

Vertex domain

representation

Spectral domain

Representation

① Obtain the spectrum of 

the new graph with 

greedy method

② Get the spectrum of the 

coarsened signal with 

spectral bin method*

ˆ ( )f 

ˆ ( )f 

λ 

λ 

λ 

λ 

Step1

Step2

？
Coarsened

graph signal

•
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Original graph

signal

Coarsened

graph signal

Vertex domain

representation

Spectral domain

Representation

① Obtain the spectrum of 

the new graph with 

greedy method

② Get the spectrum of the 

coarsened signal with 

spectral bin method

③ Construct the coarsened 

graph with ADMMˆ ( )f 

ˆ ( )f 

λ 

λ 

λ 

λ 

Step1

Step2

Step3.1

Step3.2

？
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Coarsened graph
λ 

Template graphTopology

Coarsening

Original graph

New spectrum



• 𝐋in

 𝐋

• 𝐋 = 𝐔𝚲𝐔T 𝚲 = diag(𝝀) 𝝀

•

③
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𝐋 = 𝐔𝚲𝐔T

𝐔 ∈ 𝒪𝑛  = { 𝐗 ∈ ℝ𝑛×𝑛 | 𝐗𝐗T = 𝐗T𝐗 = 𝐈𝑛
𝐋 ∈ ℳ1 = {𝐗 ∈ ℝ𝑛×𝑛 | 𝐗𝟏𝑛×1 = 𝟎𝑛×1 

 𝐋 ∈ 𝒩− = { 𝐗 ∈ ℝ𝑛×𝑛 | 𝑥𝑝,𝑞 ≤ 0, 𝑝 ≠ 𝑞

subject to

min 𝐹 𝐔, 𝑡 = ‖𝐋 − 𝑡 𝐋‖F
2 + 𝜏‖𝐋‖1



• 𝐋in

 𝐋

• 𝐋 = 𝐔𝚲𝐔T 𝚲 = diag(𝝀) 𝝀

•

•

③
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𝐋 = 𝐔𝚲𝐔T

𝐔 ∈ 𝒪𝑛  = { 𝐗 ∈ ℝ𝑛×𝑛 | 𝐗𝐗T = 𝐗T𝐗 = 𝐈𝑛
𝐋 ∈ ℳ1 = {𝐗 ∈ ℝ𝑛×𝑛 | 𝐗𝟏𝑛×1 = 𝟎𝑛×1 

 𝐋 ∈ 𝒩− = { 𝐗 ∈ ℝ𝑛×𝑛 | 𝑥𝑝,𝑞 ≤ 0, 𝑝 ≠ 𝑞

subject to

min 𝐹 𝐔, 𝑡 = ‖𝐋 − 𝑡 𝐋‖F
2 + 𝜏‖𝐋‖1

Eigenvalue decomposition

𝐋 is Laplacian of a graph

Ensure topological similarity Induce sparsity

Graph spectrum constraint



22

Original graph

signal

Coarsened

graph signal

Vertex domain

representation

Spectral domain

Representation

① Obtain the spectrum of 

the new graph with 

greedy method

② Get the spectrum of the 

coarsened signal with 

spectral bin method

③ Construct the coarsened 

graph with ADMM

④ Acquire the coarsened 

signal with inverse 

Fournier transform on 

graphs

ˆ ( )f 

ˆ ( )f 

λ 

λ 

λ 

λ 

Step1

Step2

Step3.1

Step3.2

Step4
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Original graph signal Coarsened graph signal

• Original and coarsened graph signal in the vertex domain

– From a 150-vertex graph with 3 communities

– To a graph with 13 vertices

• Vertex domain similarity:

– Preserve community structures

– Preserve signal properties inside each community
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• Original and coarsened graph signal in the spectral domain

• Spectral domain similarity:

– New graph spectrum is approximately a subset of that of the original one

– Small spectral diversity between the original graph signal and the 

coarsened one

Original

Zoom in

Coarsened



• Spectral diversity of original and coarsened graph signals when aiming 

for different density levels of graphs
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Each point is the average of 100 trails All trails

Proposed method performs best



•

–

–

•

–

26



27


