A New High Precision Eye Center Localization Technique

Nikolaos Poulopoulos and Emmanouil Z. Psarakis

Computer Engineering and

Introduction

Eyes represent the most distinctive features of the human face, while their position and movements are a significant source of information about the
cognitive and affective state of humans. Precise eye center localization constitutes a challenging problem in many human-computer interaction applications.

- An automatic method is introduced for the precise eye center localization,
based on a modified version of the Fast Radial Symmetry Transform¹ based on a modified version of the Fast Radial Symmetry Transform ${ }^{1}$. Experiments performed in two publicly available face latabases, where
there is a wide variety of ages, ethnicities, poses, lighting conditions, there is a wide variety of ages, ethnicities, poses, lighting conditions,
shadows, presence of occlusions (hair, glasses) and reflections. The results demonstrate the superior performance and enhanced accuracy The results demonstrate the superior performance and
of this technique against the state-of-the-art methods.

Proposed Method

The proposed method consists of the following steps (Fig. 1):

- Firstly, the face is detected and the two eve Region
- Firstly, the face is detected and the two eye Regions of Interest are selected. An edge-preserving filter is applied to enhance the circular shape of the
eyes and separate them from the skin. eyes and separate them from the skin.
Then, a modified Radial Symmetry Transform (RST) ${ }^{1}$ is used to localize the
eye centers. Specifically, its magnitude component results from the red eye centers. Specifically, its magnitude component results from the red
color component of the original image while its orientation component from a properly filtered version of the original one. Finally, the superposition of
their normalized counterparts denotes t the their normalized counterparts denotes the position of the eyes centers.

Edge Preserving Filtering

Self-Quotient Image (SQI)

Observation: Illumination is considered as one of the main limitations in the eye localization problem.
Goal: SQI aims to construct a lighting invariant representation of the image Which can effectively removes the shadow for any type of lighting sources. and its smoothed version, i.e.:

$$
Q(x)=\frac{I(x)}{I_{\sigma}(x)} \quad \text {, where: } \quad I_{\sigma}(x)=I(x) * G_{\sigma}(x)
$$

- Denoising Scheme

Observation: SQI suffers from noise because of the division operation. Goal: The elimination of this undesirable amplification of the noise.
Step 1. A sigmoid correction is applied to the SQl to suppress the noise:
$T(x)=S(Q(x))$ \qquad $S(x)=\frac{1}{1+e^{-a\left(x-x_{0}\right)}}$
Step 2. A convolutional Gaussian kernel is used to smooth the image $Q_{f}(x)=T(x) * G_{\sigma}(x)$

Modified Radial Symmetry Transform

- Observation: Symmetry constitutes one of the primary properties of the eyes.
Proposa Proposal: Separation of the RST into two parts and exploit the Red component and the SQl image to precisely detect the eye centers.
Definition: The affected pixels are determined based on the gradient direction:

$$
p_{\text {fficiced }}(r)=p+\operatorname{round}\left(\frac{\nabla I(p)}{\|\nabla I(p)\|_{2}} r\right)
$$

Magnitude Radial Symmetry Transform

Goal: Exploit the enhanced contrast existing between the eyes and the skin. Proposal: Selection of the Red component only to apply the Magnitude RST.

$$
M_{r}\left(p_{\text {dficeede }}\right)=M_{r}\left(p_{\text {dfjecede }}\right)+\| \nabla I(p) \mid
$$

The contribution is convolved with a Gaussian kernel and summed

$$
S_{\mu}=\sum\left(M_{r} * G_{r}\right)
$$

Orientation Radial Symmetry Transform

Goal: Exploit the shadow-free image from the edge-preserving filtering. - Proposal: Application to the SQ Image and counting only on the orientation of the gradient to distinguish the eye shape.
efinition: For each radius an "Orientation Projection Image" is constructed

$$
o_{r}\left(p_{\text {affecead }}\right)=o_{r}\left(p_{\text {affecead }}\right)+1
$$

The contribution is convolved with a Gaussian kernel and summed $S_{o}=\sum_{r \in N}\left(O_{r}{ }^{*} G_{r}\right)$

The optimization problem

- The location of the eye centers results from the solution of the problem:

$$
p^{*}=\arg \max \left(S_{M, \text { norm }}+S_{o, \text { nom }}\right)
$$

Parameters Specification

election of the set of radii: It is selected based on the expected iris size in
relation to the face dimensions:

$$
r_{\min }=\max \left\{\frac{\text { FaceWidth }}{60}, 3\right\}, \quad r_{\max }=\frac{\text { FaceWidt }}{6}
$$

Experimental Setup
The performance of the proposed method is evaluated in two publicly
Thailable face databases: MUCT (3755 color images, BiolD (1521 gray-scale avaliable face databases: MUCT (355 color images,
images).
Definition: The normalized error, quantifying the worst eye estimation:

Experimental Results

e proposed method anes high accuracy and robustness in localizi he eye centers (Fig. 3).

据 y under the most challenging circumstances, dcluding shadows, pose variations, occlusions by hair or strong reflections,

erformans of tables 1,2 provide supporting evidence of the superior
Points with e ≤ 0.25 belong to a disk with its center located to the eve center and its periphery to the eye corner, points with e ≤ 0.1 belong to the disk of the iris while points with e ≤ 0.05 belong to the pupil area.

Fig. 3: Our method localizes precisely the eye centers under challenging conditions

A new, fully automatic, non-intrusive eye center localization method is proposed, based on a modified version of Radial Symmetry Transform. - The proposed tecchnique combines simplicity with high precision to provide accurate localization under the most challenging circumstances.
This method was tested among the most challenging face databases and outperformed in accuracy the compared state-of-the-art techniques.

References
 Refanc

[^0]
[^0]: 1. G. Loy and A. Zelinsky, "Fast radial symmetry for detecting points of interest", 1EEET Transaction on pattern Analysis and Machis

