A DEEP NEURAL NETWORK FOR OIL SPILL SEMANTIC SEGMENTATION IN SAR IMAGES

Information

1. Introduction

Satellite Synthetic Aperture Radar (SAR) images High resolution representations

- Large areas coverage
- Light and weather condition invariability

Typical approach for oil spill detection

- Detection of the dark formations in SAR
- Feature extraction for the dark formations
- Feature classification
- Decision making model for object labeling

Main drawbacks

- Selection of specific features
- Feature extraction is required
- Single label assignment to each input image
- Two-class classification problem

Advantages of using deep convolutional neural networks

- No feature extraction
- Simple extension to a multi-class problem
- No image patches is required
- Robust and accurate solution
- Simple model expansion and modification

2. Methodology

- A DeepLab¹ model variant was deployed
- Backbone model: ResNet-101 model
- The model was redefined, properly trained and fine-tuned for oil spill identification.
- Satellite images include large operational amplitudes
- R-CNN spatial pyramid pooling (ASPP) method
- variations

Yuille, A. L. (2018). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.

SAR images

Georgios Orfanidis¹, Konstantinos Ioannidis¹, Konstantinos Avgerinakis¹, Stefanos Vrochidis¹, Ioannis Kompatsiaris¹ ¹Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece {g.orfanidis,kioannid,koafgeri,stefanos,ikom}@iti.gr

3. Dataset

- Geographical coordinates for confirmed oil spills were provided from European Maritime Safety Agency (EMSA)
- CleanSeaNet service: 28/09/2015 up to 31/10/2017
- European Space Agency (ESA) services for SAR images
- Copernicus Open Access Hub 1
- Training and evaluation set: 571 and 106 images, respectively

SAR Data Preprocessing

- Oil spills were localized
- SAR representations were cropped to include objects of interest
- Rescale to resolution of 1252x609 "SAR pixels"
- Radiometric calibration
- Speckle filtering to suppress sensor noise
- Additional 7x7 mean filter was applied
- Linear transformation from db to luminosity values

4. Experimental results

- Two foreground classes (oil-spills and look-alikes)
- One background class
- Measured performance
- Pixel intersection-over-union (IoU) averaged across all classes mIoU.
- loU for every class
- Image classification accuracy for a number of patches cropped from each sample

4. Experimental results (cont.)			
Ground	tch classifica		<image/>
No Patches (3,3)	Overall	Oil spills	Look-alikes
	0.8063	0.8621	0.7588
No Patches (5,3)	Overall	Oil spills	Look-alikes
	0.8166	0.8932	0.7540

Examples

4. Conclusions

- New approach for oil spill detection with SAR images
- No similar approach addresses similarly the problem
- Incorporated into a larger detection pipeline
- No feature extraction is required
- Improving the automated oil spill detection

5. Future work

- Utilization of more advanced datasets
- Evaluation of multispectral satellite images
- Fine tuning the existing model
- Test relevant DCNN architectures for both object detection and semantic segmentation

Acknowledgments

This work was supported by ROBORDER and EOPEN projects partially funded by the European Commission under grant agreements No 740593 and No 776019, respectively.

