

UAV-Assisted Broadband Network for Emergency and Public Safety Communications

<u>Robin Grodi</u> and Danda B. Rawat

Outline

- Introduction
- System Model
- Analysis
- Results
- Conclusion

Introduction

- Earthquakes, Fire, Tornados, etc.
- Damage to Communication Infrastructure
- Wireless communication becomes unusable

Cellular Communication

- Cell Tower
- Mobile Switching Center
- Public Telephone Network

Mobile Base Stations

- Truck Based
 - Take time to set up
 - Must follow roads
 - Generally considered slow

http://www.hurtzz.com/hurtzzcom/tech/images/1 6.jpg

Public Safety Communuication

- Emergency Responders
 - Emergency Medical Services (EMS)
 - Fire and rescue
 - Police

http://imgmax.com/photos/20130219136129433167814.JPG

Public Safety Communication

- Spectrum Act
 - 700 MHz band
 - First Responder Network Authority (FirstNet)
 - Unified Nationwide Public Safety Broadband Network
 - Pictures, Video, Building Layouts, etc.

Unmanned Aerial Vehicles

- Equipped with various sensors and equipment
 - Magnetometer, Accelerometer, Gyroscope, GPS, etc.
- Capable of autonomous navigation and flight
 - Microcontroller

System Model

- UAV Base Stations
 - Form ad hoc network with closest cell tower

System Model

- Deployment Centers
 - House UAVs
 - Receive information about disasters and damaged cell towers
 - Deploys appropriate amount of UAVs

- $T_{Response} = T_{Activation} + T_{Flight} + T_{Sensing} + T_{Setup}$
 - $T_{Activation} =$ Activation Time of UAV
 - T_{Flight} = Flight time to desired area
 - *T_{Sensing}* = Time to sense RF spectrum
 - *T_{Setup}* = Time to setup and begin routing

• Channel Capacity

$$C = \frac{B}{K} \left(\frac{R_D}{R}\right)^{-1} \log_2(1+\gamma_k)$$

- B = Bandwidth
- K = Number of sub-channels
- R_D = Reuse Distance
- R = Distance between two nodes
- γ_k = Signal to Interference plus Noise Ratio

• SINR

$$\gamma_k = \frac{P_t \cdot R^{-\alpha}}{B \cdot N_0} K^{\alpha+1} = \frac{\sigma_s^2}{\sigma_n^2}$$

- P_t = Transmitted Power
- α = Path loss exponent
- σ_s^2 = Variance of received signal
- $N_0 = \sigma_n^2$ = Variance of the noise

• Throughput

$$\theta = \frac{B_{PJ} \cdot P_J}{P_d} \frac{B}{\sum_{\forall i} (P_J + K - 1 + i) p_i}$$

- B_{PI} = Rate (bits/packet)
- P_I = Number of packets
- P_d = Propagation delay
- p_i = Probability of packet transmission
- *i* = Given duration

• Overlap of any two UAV nodes

$$0 = r_i + r_j - ||c_i - c_j||_2 \ge 0$$

- $r_{i,j}$ = Radius of UAV transmission range
- $||c_i c_j||_2 = 2$ -norm Distance from one UAV to another

• Minimum number of UAVs for a given area

$$N = \frac{A_t}{A_u} \ \rho_p$$

- A_t = Coverage area of downed tower
- A_u = Coverage area of each UAV
- ρ_p = Packing Density

Results

UAV Transmission Range vs. Needed number of UAVs

Results

Channel Capacity vs. SINR

Results

Channel Capacity vs Reuse Distance Factor

Conclusion

- UAV-Assisted Broadband Network for Emergency and Public Safety Communications
 - Problem Statement
 - Proposed Solution
 - Analysis
 - Results
- Future Works
 - How quick as compared to ground based systems
 - How many users can each UAV handle
 - How to provide security or priority for responders

Questions?

