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Channel estimation followed by beam-selection
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MmWave channel estimation a challenging problem
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Good news: MmWave channels are sparse

Poor scattering

4

Spatially sparse
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Compressed sensing
[Al 14][AlK’15]
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[Alk’14] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath Jr., “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8,

no. 5, pp. 831-846, 2014.

[Alk’15] A. Alkhateeb, G. Leus, and R. W. Heath Jr., “Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?” in Proc. IEEE Int. Conf.

Acoust., Speech Signal Process. (ICASSP), April 2015, pp. 2909-2913. 3
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Sub-6 GHz/mmWave multi-band communication

Blockage:

Information from legacy WiFi
Fallback to to reduce training overhead in

ALY Sub-6 GHz 60 GHz WiFi [Nit’| 5]
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,ﬂ: Tl\’ Correlation translation
I .I‘ from Sub-6 GHz to

Sub-6 GHz R 333 Y mmWave [Ali 6]
array : :
Optimal Sub-6 GHz/
Sub-6 GHz: Control sign. T SenSel i
MmWave: High data rate - [Hash’l 7]
Multi-band BS Multi-band UE

[Nit'15] T. Nitsche, A. B. Flores, E. W. Knightly, and J. Widmer, “Steering with eyes closed: mm-wave beam steering without in-band measurement,” in Proc. IEEE Int. Conf. Comput.
Commun. (INFOCOM), 2015, pp. 2416— 2424.

[AI’16] A. Ali, N. G. Prelcic, and R. W. Heath Jr., “Estimating Millimeter Wave Channels using Out-of-Band Measurements,” in Proc. Inf. Theory Appl. (ITA) Wksp, 2016, pp. 1-5.
[Hash’17] M. Hashemi, , C. E. Koksal and N. B. Shroff, “Hybrid RF-mmWave Communications to Achieve Low Latency and High Energy Efficiency in 5G Cellular Systems”, arXiv preprint
arXiv:1701.06241.
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Spatial congruence in sub-6 GHz and mmWave
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Directional power distribution profile at three frequencies [Perter’16]

Similar power delay profile for 10 GHz and 30 GHz [Dupleich’16]

Elevation Angle [deg]
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Minor differences in CDFs of Azimuth/Elevation AoA/AoD spread [Ky’ 6]

[Peter'16] M. Peter et al., “Measurement campaigns and initial channel models for preferred suitable frequency ranges,” Millimeter-Wave Based Mobile Radio Access Network for Fifth
Generation Integrated Communications, Tech. Rep., Mar. 2016.

[Dupleich’16] D. Dupleich et al., “Simultaneous multi-band channel sounding at mm-Wave frequencies,” in Proc. Eur. Conf. Antennas Propag. (EuCAP), Apr. 2016, pp. 1-5.

[Ky’'17] P.Ky et al.,“Frequency dependency of channel parameters in urban LOS scenario for mmwave communications,” in Proc. Eur. Conf. Antennas Propag. (EuCAP), Apr. 2016, pp. 1-5.
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Contributions

Beam-selection
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System and channel model
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MmWave beam-selection G=A}LHAug

Exhaustive search J}

Realize DFT codebook ¥ = arg max| [g]i]

AUE ., 5 s 1
.
with “ B
Dyg = logy(Mug) . 4
bit phase-shifters e .
Also for BS get Ass g=vec(G)= (Al ® ALg)vec(H)

Compressed beam-selection Vectorized measurement vector

A
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/ l \ Transmission symbol _ \/E_S(FT.(X)Q*)( %E ® ABS)ngvec(V)

Ngs combiners
Nas x Nue Nye precoders R

outputs Combined precoding/combing matrix Sparse unknown

CO”GCtiVG')’ Y = | /H@-‘V realized using analog beamforming v
Dictionary: Columns are uniformly spaced

Collective combiner Collective precoder samples of BS/UE arrays
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Out-of-band aided compressed beam-selections

Measurement matrix ==*® = \/E,(F' ® Q*) Dictionary matrix ==+ ¥ = (A{p ® Ags)

The best beam can be any

beam with equal probability \"b

minimize ||gl1

subjectto ||y — ®Pg||o S@ ------ » Tolerance

£,-minimization

Weighted minimize

£,-minimization subjéctto [y — @Wgllz < e
MosMpsf)
lgllws = SoI5EMES(w)il[g]s
1 Out-of-band information
about likely beams

Entries of the weighting vector
[Fr12] M. P. Friedlander et al., “Recovering compressively sampled signals using partial support information,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1122—1134, Feb. 2012.
[Sc’13] J. Scarlett, J. S. Evans, and S. Dey,“Compressed sensing with prior information: Information-theoretic limits and practical decoders,” IEEE Trans. Signal Process., vol. 61, no. 2, pp.
427-439, Jan 2013.
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Angle estimation at Sub-6 GHz
Geometric channel for sub-6 GHz Definition c(¢.0) = aip(¢) @ apg(f)

Distinguish sub-6 GHz with underline In source direction c(¢.6)*U, U%c(6.6) =
_— 2D Angle Spectrum
Empirical estimate R; Root-MUSIC
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/\/ / Make a polynomial in ¢, f and Find roots

R; = UAL U, + UL Double Root-MUSIC [Ben’|0]

Can detect Automatic
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[Ben’10] M. L. Bencheikh, Y. Wang, and H. He, “Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar,” Signal Process., vol. 90, no. 9, pp. 2723-2730,
2010.
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Weight calculation

Recall that we want to solve  minimize ||g|w.1
subjectto ||y — ®Pglls <€

Sub-6 GHz/mmWave Accuracy of angle

mismatch estimation algorithm works
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MmWave angles

A={(w,v1), -, (WP;VP)}

Corresponding to the dominant angles
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[Fr12] M. P. Friedlander et al., “Recovering compressively sampled signals using partial support information,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1122—1134, Feb. 2012. 13
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Conclusions and Future Work

Weighted CS based Recovery is promising to reduce overhead in comparison with
traditional CS, much lower than exhaustive search

Beneficial when the dominant AocA/AoD at sub-6 GHz and mmWave are similar

Extensions to other array geometries, hybrid analog/digitial or fully digital
architectures at mmVVave

14
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Questions?

www.profheath.org

www.anumali.com




