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Conceptual setting

• New formulation of the short-time Fourier
transform (STFT) for graph signals

• Fundamental building block: personalized
PageRank (PPR) vectors

• Connecting local spectral graph theory and
localized spectral analysis of graph signals

Local spectral analysis

The STFT as a three-steps algorithm:
1 translate the window w by u
2 modulate the result by frequency ξ
3 take the convolution of the result with the signal f

Can be written as STFTf = 〈f,MξTuw〉, where
• (Tug)(t) .= g(t− u) is the translation operator
• (Mξg)(t) .= g(t)eiξt is the modulation operator

Local spectral graph theory

Given S ∈ V , define the unit vector s = unit(S) as

(unit(S))i .=

b/ vol (S) if i ∈ S;
−b/ vol (V r S) otherwise,

where b =
√√√√vol (S) vol (V r S) / vol (V ).

Spectral decomposition with a twist:

x∗ = argmin
x

xTLx s.t.
xTDx = 1,
xTD1 = 0,
xTDs ≥ κ.

(1)

x∗ is the solution to the PPR equation:
Dp = (1− α)(Ds) + αAD−1(Dp).

Translation over graphs

We define the local window at node i as
wi

.= max (0, x∗i ) / ‖max (0, x∗i )‖1 ,

where x∗i the solution to Problem (1) with s =
unit({i}) and the maximum is taken entrywise.

Modulation over graphs

For k ∈ {1, 2, . . . , n}, we define the graph modula-
tion operator Mk : Rn→ Rn by

Mkf
.=

√√√√vol (V ) f ◦ (D−1/2U):k,

where D is the degree matrix, U are the eigenvec-
tors of the normalized graph Laplacian, and ◦ is the
entrywise multiplication.

Short-graph Fourier transform

Let f ∈ Rn be a signal over a graph G = (V,E).
We define its short-graph Fourier transform at vertex i ∈ V and frequency k ∈ {1, 2, . . . , n} as

SGFTf(i, k) = 〈f ,Mkwi〉.
The spectrogram of f is defined as

spectrogramf(i, k) = | SGFTf(k, i)|2.
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forms are set to 10−5, all other edges = 1
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Window localization comparison
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Future work

Study theoretical properties Extension to wavelets
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