A MINORIZATION-MAXIMIZATION ALGORITHM FOR AN-BASED MIMOME SECRECY RATE MAXIMIZATION

Mudassir Masood (KFUPM), Ali Ghrayeb (TAMUQ), Prabhu Babu (IIT), Issa Khalil (QCRI), Mazen Hasna (QU)

1. What is this work about?

- * The problem of secrecy rate maximization in a multi-input multi-output multi-eavesdropper (MIMOME) wiretap channel is considered
- * An algorithm to achieve an exact solution is developed
- * Approach: Maximize achievable secrecy rate by performing joint-beamforming-and-artificial-noise optimization
- ***** Method: Develop a minorization-maximization algorithm to solve the difficult to optimize problem
- * The locally optimal solution allows us to benchmark existing methods

2. System Model

- * Alice, Bob and Eve are multi-antenna devices with N_A, N_B and N_E antennas respectively
- \star Alice generates data (s) and artificial noise (z)
- \star Bob is full-duplex generates artificial noise (w) while receiving data
- \star Bob is equipped with self-interference cancellation (ρ)

$$egin{aligned} \mathbf{x} &= \mathbf{s} + \mathbf{z} \ \mathbf{y}_{Bob} &= \mathbf{H}\mathbf{x} + \sqrt{
ho}\mathbf{F}\mathbf{w} + \mathbf{n}_{Bob} \ \mathbf{y}_{Eve} &= \mathbf{G}\mathbf{x} + \mathbf{J}\mathbf{w} + \mathbf{n}_{Eve} \ \mathbf{s} &\sim \mathcal{CN}(\mathbf{0}, \mathbf{Q}), \mathbf{z} \sim \mathcal{CN}(\mathbf{0}, \mathbf{\Sigma}), \mathbf{w} \sim \mathcal{CN}(\mathbf{0}, \mathbf{W}) \end{aligned}$$

3. Secrecy Rate Maximization

We maximize the achievable secrecy rate as follows: $\{C_b(\mathbf{Q}, \mathbf{\Sigma}, \mathbf{W}) - C_e(\mathbf{Q}, \mathbf{\Sigma}, \mathbf{W})\}$ $R_s^{\star} = \max_{\mathbf{Q}, \Sigma, \mathbf{W}}$ s.t. $\mathbf{Q} \succeq \mathbf{0}, \mathbf{\Sigma} \succeq \mathbf{0}, \mathbf{W} \succeq \mathbf{0},$

where

 $C_b(\mathbf{Q}, \mathbf{\Sigma}, \mathbf{W}) \longleftarrow$ achievable rate at Bob $C_e(\mathbf{Q}, \mathbf{\Sigma}, \mathbf{W}) \longleftarrow$ achievable rate at Eve

4. Minorization-Maximization Algorithm

- \star In its original form, the secrecy rate maximization problem cannot be solved as it contains some convex terms.
- \star We use MM to reformulate it into a sequence of simpler and easy to optimize cost (surrogate) functions.
- * These surrogate functions must minorize the original cost function at a given point to ensure tightness. \star We use Lemma 1 to reformulate the secrecy rate
- maximization problem.

Lemma 1: For $f(\mathbf{X}) = -\log \det \mathbf{X}$, a function of square matrix \mathbf{X} , the minorizing function at $\mathbf{X} = \mathbf{X}_0$ is given by $\overline{f}(\mathbf{X}, \mathbf{X}_0) = -\log \det \mathbf{X}_0 - \mathbf{X}_0$ Tr $(\mathbf{X}_0^{-1}\mathbf{X})$. Here $\overline{f}(\mathbf{X}, \mathbf{X}_0)$ is the tangent plane of $f(\mathbf{X})$ which lower bounds it at ${f X}={f X}_0$ while ${f X}_0^{-1}$ is the gradient of $\log \det {f X}$ evaluated at \mathbf{X}_0 .

MM estimation of optimal $(\mathbf{Q}, \boldsymbol{\Sigma}, \mathbf{W})$

- $\star k = 0$, Initialize $\mathbf{Q}^{(0)}, \mathbf{\Sigma}^{(0)}, \mathbf{W}^{(0)}$ \star do
 - $R_s^{(\kappa)} =$ Solve reformulated problem using $\mathbf{Q}^{(k)}, \mathbf{\Sigma}^{(k)}, \mathbf{W}^{(k)}$
 - k = k + 1 $\mathbf{Q}^{(k)} = \mathbf{Q}^{(k-1)}, \ \mathbf{\Sigma}^{(k)} = \mathbf{\Sigma}^{(k-1)}, \ \mathbf{W}^{(k)} = \mathbf{W}^{(k-1)}$
- *** until** convergence
- $\star \mathbf{Q}^{\star} = \mathbf{Q}^{(k)}, \ \mathbf{\Sigma}^{\star} = \mathbf{\Sigma}^{(k)}, \ \mathbf{W}^{\star} = \mathbf{W}^{(k)}$
- \star Calculate secrecy rate R_s^{\star} using $(\mathbf{Q}^{\star}, \mathbf{\Sigma}^{\star}, \mathbf{W}^{\star})$

- $\mathsf{Tr}(\mathbf{Q}) \leq P_s, \, \mathsf{Tr}(\mathbf{\Sigma}) \leq P_z, \, \mathsf{Tr}(\mathbf{W}) \leq P_b.$

5. Experiments

parameters

(-2.0,0.5) to (2.0,0.5).

7. References

[1] G. Zheng, I. Krikidis, J. Li, A. Petropulu, and B. Ottersten, "Improving physical layer secrecy using full-duplex jamming receivers," IEEE Trans. Sig. Proc., vol. 61, pp. 49624974, 2013. [2] M. Masood, A. Ghrayeb, P. Babu, I. Khalil, and M. Hasna, "A Minorization-Maximization Algorithm for Maximizing the Secrecy Rate of the MIMOME Wiretap Channel," IEEE Comm. *Lett.*, 2017.

8. Acknowledgement

This work was made possible by NPRP grant NPRP 8-052-2-029 from the Qatar National Research Fund (a member of Qatar Foundation).

Setup 2: Alice and Bob are located one kilometer apart at (-0.5,0) and (0.5,0) respectively and Eve moves along the line y = 0.5 from