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The log-likelihood  L(w) = M H log p(y;|x:, w) + log p(N X, w) 1. LRSSS-opt: proposed method 2. LRSSS-tune: proposed method with tuned N
— | 3. LACU [1] 4. LR-L: trained with labeled data only 5. LRSSS-true: trained with labeled data only
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