Find С that an instance IJ. a label Ы.

Number of novel class instances: N

- 2 \leq Unlabeled hich are both known data: Μ Rd R^d, Y_{L+i} is classes a and novel class unknow In and $| y_{L+i} \in \{0, 1, ...\}$ s (denoted as **(**0, 0). C}
- <u>+</u> Labeled data: $\mathbf{x}_{i} \in$ $\underline{X} = \mathbb{R}^{d}$, $y_i \in$ **;**1 · · · / C} which are known classes.
- **Training** data: and unlabeled data

formulation

Goal: Obtain margins for {bird, fish, dog} and **r**e maining region S for

This work is partially supported by the National Science Fou Indation

th Raich, Π **D** S ence and Xiaoli 0 0 N ern as S instances

Semi-supervised lea

rni

80

on

Z.-H. Zhou, "Learning Artificial Intelligence

, "Learning with aι ntelligence, 2014, μ

augmented class 1, pp. 1760–1766.

by

' exploitin

ы С

unlabeled data,"

Ľ.

pp.

results

are uniformly generated from 0 σ areas representing С classes F ğ 4(a))

100 labeled samples and 1000 unlabeled samples (Fig. 667 known class instances in the with N decreases unlabeled data from 950 4(b)) $\mathbf{\mathbf{V}}$ Л

00

1

Fig. 4: Results on a toy dataset. (a instances are blue. (b) Labeled in cyan dots) and unlabeled instances boundary when N = 950, N = 8 respectively. : (a) Class distribution, novel class of instances (red, pink, green, and ces (small black dots). (c-f) Learned = 800, N = 650, and N = 500, Ś

trained with labeled data only N LRS S S tun Ω σ б Ō Ô sed G LRSSSmeth -true: bo with trained tuned N with labeled data

only

...

results

e

 \geq

50Salad, MNIST: Using the default class Ο .der • • clas Ś Ļ, N ω Ū known, clas 4 S.

ar

Ś

as

0.8

<

D

0.4

0.6

0.2

0

0

Re S ults:

Dataset	HJA bird	MSCV2	50Salad	MNIST
LRSSS-opt	74.4±1.7	77.8±2.2	72.8±2.2	$82.0{\pm}3.1$
LRSSS-tune	$73.2{\pm}2.5$	69.0 ± 1.5	69.0±2.7	69.2 ± 3.3
LACU	51.6±8.8	65.8±7.1	65.7±7.5	79.4±3.3
LR-L	54.1 ± 2.1	73.2 ± 1.7	42.1 ± 1.9	67.7±2.4
LRSSS-true	74.3 ± 1.3	$78.0{\pm}2.1$	70.1±2.5	78.5±3.3

proposed n two-tailed Table 1: 1: Accuracy results of the prosed method and indistinguishaniled paired *t*-tests with the high nighest roposed approach and LACU. The hable values using 95% confidence values are bolded.

semi-supervised learning IJ. the presence Of novel class

approac

to

Ο

control

the

Ο

ardinality

the

of

kn

0

Ś

cla

S

Ň

instances

data

the

computational efficiency for

the

step

number of novel class instances

the

CASSP 201 0